Exploiting High-Performance Heterogeneous Hardware for Java Programs using Graal
Published in ManLang 2018, Linz, Austria, 2018
Recommended citation: James Clarkson, Juan Fumero, Michalis Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, Christos Kotselidis, Mikel Lujan (The University of Manchester) Exploiting High-Performance Heterogeneous Hardware for Java Programs using Graal. ManLang 2018. https://www.researchgate.net/publication/327097904_Exploiting_High-Performance_Heterogeneous_Hardware_for_Java_Programs_using_Graal
Abstract
The proliferation of heterogeneous hardware in recent years means that every system we program is likely to include a mix of compute elements; each with different characteristics. By utilizing these available hardware resources, developers can improve the performance and energy efficiency of their applications. However, existing tools for heterogeneous programming neglect developers who do not have the time or inclination to switch programming languages or learn the intricacies of a specific piece of hardware.
This paper presents a framework that enables Java applications to be deployed across a variety of heterogeneous systems while exploiting any available multi- or many-core processor. The novel aspect of our approach is that it does not require any a priori knowledge of the hardware, or for the developer to worry about managing disparate memory spaces. Java applications are transparently compiled and optimized for the hardware at run-time. We also present a performance evaluation of our just-in-time (JIT) compiler using a framework to accelerate SLAM, a complex computer vision application entirely written in Java. We show that we can accelerate SLAM up to 150x compared to the Java reference implementation, rendering 107 frames per second (FPS).