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Abstract
During the last decade, managed runtime systems have been
constantly evolving to become capable of exploiting underly-
ing hardware accelerators, such as GPUs and FPGAs. Regard-
less of the programming language and their corresponding
runtime systems, the majority of the work has been focusing
on the compiler front trying to tackle the challenging task
of how to enable just-in-time compilation and execution of
arbitrary code segments on various accelerators. Besides this
challenging task, another important aspect that defines both
functional correctness and performance of managed runtime
systems is that of automatic memorymanagement. Although
automatic memory management improves productivity by
abstracting awaymemory allocation andmaintenance, it hin-
ders the capability of using specific memory regions, such
as pinned memory, in order to perform data transfer times
between the CPU and hardware accelerators.

In this paper, we introduce and evaluate a series ofmemory
optimizations specifically tailored for heterogeneous man-
aged runtime systems. In particular, we propose: (i) transpar-
ent and automatic “parallel batch processing” for overlapping
data transfers and computation between the host and hard-
ware accelerators in order to enable pipeline parallelism, and
(ii) “off-heap pinned memory” in combination with parallel
batch processing in order to increase the performance of
data transfers without posing any on-heap overheads. These
two techniques have been implemented in the context of the
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state-of-the-art open-source TornadoVM and their combina-
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1 Introduction
Following the development of heterogeneous programming
models such as OpenCL [17] and CUDA [7], managed pro-
gramming languages such as Java, Python, etc. have been
making steady progress towards integrating into their exe-
cution models and managed runtime environments (MREs)
the various hardware accelerators that are commonly found
today in a wide spectrum of devices spanning from smart-
phones to cloud servers [2, 4, 13, 21, 22, 34, 42].

The majority of existing frameworks have been primarily
focused on the challenging task of generating suitable code
for hardware accelerators from general purpose or domain
specific languages with only a few focusing on memory op-
timizations for improving data transfer times between CPUs
and hardware accelerators [14, 15]. In this paper, we ana-
lyze the various challenges that managed runtimes face in
terms of memory management and heterogeneous execution,
and propose a series of optimizations that aim to increase
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Figure 1. The Overview of a Heterogeneous Managed Run-
time System.

performance without posing significant overheads to the un-
derlying runtimes. In detail, this paper makes the following
contributions:
• It presents and discusses existing limitations in a state-of-
the-art MRE (the Java Runtime Environment) with regards
to memory management and data transfers on heteroge-
neous systems. The analysis is performed based on: (i)
the behaviour of asynchronous data transfers, (ii) the uti-
lization of off-heap buffers (data structures that are not
managed by the runtime), and (iii) the utilization of pinned
memory which is currently not supported by the majority
of MREs.

• It introduces the notion of “parallel batch processing” in
TornadoVM that enables the overlapping of execution and
data transfers between the host device and the accelera-
tors with the aim of increasing performance due to the
introduced pipelining.

• It extends the “parallel batch processing” technique with
“off-heap pinned”memory that avoids the on-heapmemory
copies to pre-allocated pinned memory as well as increases
performance by avoiding virtual pages from being evicted
while execution is performed on the hardware acceler-
ators. The performance analysis indicates that off-heap
pinned memory alone can yield up to 50% performance
improvement in data transfer times. If combined with par-
allel batch processing, then results indicate end-to-end
execution speedups of up to 2.5𝑥 compared to the base-
line implementation that does not utilize parallel batch
processing and pinned memory.
The remaining of the paper is organized as follows: Sec-

tion 2 gives the background on managed runtime systems
and heterogeneous programmingmodels; and it discusses the
posed challenges when combining them. Section 3 presents
the implementation of “parallel batch processing” as well as

the combination with “off-heap pinned” memory. Section 4
presents the results of the proposed techniques, while Sec-
tion 5 discusses the related work. Finally, Section 6 concludes
the contribution of this paper and pinpoints future work.

2 Background
This section provides the background information on MREs
and memory management of heterogeneous programming
models. In addition, it analyzes the current challenges for
enabling heterogeneous hardware execution from within
managed runtimes. In detail, Section 2.1 gives an overview on
the internals of a Virtual Machine (VM). Section 2.2 explains
the execution model of heterogeneous programming models
such as CUDA and OpenCL. Finally, Section 2.3 presents
the challenges posed to automatic memory management of
MREs by heterogeneous hardware acceleration.

2.1 VM Internal Overview
Although different managed programming languages can
execute on various compatible implementations of their cor-
responding VMs, a number of core VM components can be
commonly found across different implementations. In this
paper, we focus on the Java programming language, but both
the described challenges and the proposed solutions can
apply across various VMs that support different managed
programming languages. Hence, Figure 1 presents an outline
of the core internal components of a standard Java VM (JVM)
along with the necessary can be transformed to support het-
erogeneous hardware acceleration. The standard JVM (top
left box) includes an execution engine along with a runtime
system. The execution engine encompasses: (i) the JIT Com-
piler, which generates optimized code based on profiling
information retrieved at runtime by the interpreter, thereby
enabling profile-guided speculative optimizations which can
be mitigated by de-optimization and interpretation if they do
not hold true, and (ii) the Memory Management subsystem,
which enables automatic memory management - in the form
of garbage collection [23] - of the JVM heap. The JVM heap
is a memory area allocated in the CPU main memory where
all the living objects that belong to the applications reside.

2.2 CUDA and OpenCL execution model
Heterogeneous programming models, such as CUDA [7] and
OpenCL [17], employ conceptually similar execution models.
Based on the common execution model, a program is com-
posed of two main parts: (i) the host part, which runs on the
main CPU and orchestrates the execution of compute kernels
as well as the memory management with regards to trans-
ferring data from the host to the heterogeneous devices (e.g.,
a GPU), and backwards, and (ii) the compute kernels, which
are functions written in a C-based dialect (either CUDA or
OpenCL compute kernels) and they contain the instructions
to execute on the heterogeneous device. Discrete GPUs and
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FPGAs are usually interconnected with the CPU via PCIe and
they are equipped with dedicated memory (i.e., DDR) which
is named as “global memory” and is used to store data trans-
ferred by the main memory of the CPU. CUDA and OpenCL
developers are responsible for allocating the corresponding
memory regions (buffers) and keep consistency between the
host memory (memory regions allocated on the main CPU)
and the device memory (memory regions allocated on the
accelerator). In the case of a heterogeneous MRE (shown in
Figure 1), the runtime should administer the creation and
release of the OpenCL/CUDA buffers, while also assigning
them to specific data transfer operations.

The typical workflow for an OpenCL and CUDA program
is as follows: developers (i) allocate both the interim buffers
and the physical memory space using the corresponding
APIs, (ii) copy data from the host memory to the device
memory, (iii) launch the execution of the kernels, and (iv)
copy the final results from the device memory to the host
memory via the allocated buffers. As described, this workflow
encompasses the process of transferring data back and forth
from the host to the device which is constrained by the PCI-
e bandwidth. In some cases, when the memory bandwidth
from the global memory to the device processing cores is
significantly higher than the PCIe bandwidth, data transfers
between the host and the devices can negatively impact
performance.

2.3 Challenges
Since managed runtimes have been implemented to exe-
cute on CPUs, their adaptation to support heterogeneous
hardware acceleration poses several challenges which are
explained in the following subsections.

2.3.1 Memory Size of OpenCL/CUDA Buffers. As de-
scribed earlier in Section 2.2, heterogeneous accelerators
have dedicated memory that is used to load data for par-
allel processing and store the post-processed results. Since
dedicatedmemory on the device is finite and there is no swap-
ping capabilities, applications that want to offload higher
volumes of data are restricted. These restrictions are typi-
cally reflected to maximum sizes of OpenCL/CUDA buffers
that developers can use in order to transfer data between
the host and the accelerators. Therefore, developers of such
applications are forced to implement data distribution tech-
niques that split the data according to the memory capacity
and synchronize the execution of all subsets of data.
A potential solution to this problem could be “batch pro-

cessing”; a technique that organizes data in groups (called
batches) of arbitrary sizes. A common application of this
technique can be found in distributed Big Data processing
frameworks, where data batches are scheduled to execute on
distributed nodes of a system [41]. In this paper, we adapt and
extend the technique of “batch processing” to heterogeneous
processing in the context of MREs, in order to orchestrate

data transfer and kernel execution on hardware accelerators
with limited memory resources. Section 3 discusses the pro-
posed implementation of “parallel batch processing” which
has two advantages: (i) it enables the hardware accelera-
tion of workloads the utilize more memory than physically
present on the device, and (ii) it enables the overlapping be-
tween data transfers and kernel execution thereby increasing
performance via pipeline parallelism.

2.3.2 Blocking Synchronization. Since hardware accel-
erators are usually attached to the main computing systems
via PCI-e, the data used by the compute kernels on the target
accelerator must be transferred before the launching of the
kernels. CUDA and OpenCL allow data transfers to be per-
formed as asynchronous operations, thereby allowing the
CPU threads to continue their execution, while data trans-
fers are being performed. However, in the context of a VM
with automatic memory management, all these steps must
be in accordance with its memory management system. For
instance, if a Java program aims to send an array to a GPU
for processing, this will require that the garbage collection
will not move the array inside the heap during a GC cycle
as this could either crash the execution of the program or
lead to uncertain results due to copying of possibly stale
data. Therefore, the operations of transferring data from
host to devices (and backwards) are typically implemented
by heterogeneous MREs (e.g. TornadoVM and Aparapi), as
blocking operations. Typically, the runtime system submits
data transfer requests to a device driver via a Java Native
Interface (JNI) call. The JNI API provides two functions that
can be used to lock an object in the JVM heap and prevent it
from being moved by the GC: GetPrimitiveArrayCritical
and ReleasePrimitiveArrayCritical [29]. These functions
define a “safe” region as they ensure that the GC will not
collect the array object while code is being executed between
these two functions. Depending on which GC is being used
(e.g., SerialGC, ParallelGC [33], G1GC [10], Shenandoah [11],
ZGC [20]), the whole JVM heap might be locked, or a subre-
gion of the heap where the object lives, or only the object
itself.

Off-heap buffers. An approach to overcome blocking
data transfers is to declare memory off-heap and make it
available to the user, as shown in Figure 1. In this case, off-
heap memory ensures that garbage collection will not be
performed on this memory region and hence enable the
usage of non-blocking API calls to the drivers. Thus, the dec-
laration of off-heap memory can allow the CPU threads to
continue normal operation without being blocked. The Byte-
Buffer API [31] (introduced in Java 1.4) allows the creation
of direct byte buffers, which are allocated off-heap, allowing
the user to manipulate off-heap memory directly from Java.
One limitation of the ByteBuffer API is that the maximum
size of a buffer is 2GB. As an alternative to the ByteBuffer
API, the Foreign Memory Access API [32] (Project Panama)
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Figure 2. Pageable and Pinned Data Transfers.

has been introduced since Java 14 to address the problem
of accessing and managing off-heap memory. The Foreign
Memory Access API is implemented as an incubator module
(a runtime flag needs to be enabled in order to use it).

2.3.3 Page-locked (Pinned) Memory. The transferring
of data that reside in the main memory of the CPU implies
that data can be paged-out. Paging out is the process of
moving memory pages associated with a particular process
from fast-to-access random-access memory (RAM) to slow-
to-access non-volatile memory (hard drive). This process
uses the non-volatile memory as a storage space, when the
RAM is fully occupied. Thus, if the CPU attempts to access
any memory area that has been paged out, the contents of
this memory area will be first copied from the non-volatile
storage to the RAM (paged in). Memory paging can cause sig-
nificant overheads in the execution of a program. A solution
to this problem is Pinned (page-locked) memory which is a
term used for pages that are guaranteed that they will not
be paged out by the operating system. Furthermore, pinned
memory facilitates direct memory access (DMA) [8] com-
pared to pageable memory in which, if a memory area was
paged out, the CPU would have to copy data. In general, the
performance of data transfers in the case of heterogeneous
execution can be influenced by the PCIe interconnection
speed and/or the CPU speed in case that pageable memory is
being used. Pinned memory can help address the second bot-
tleneck by pinning pages between the host and the hardware
accelerator and by using DMA.
Figure 2 illustrates the difference between performing

pinned and non-pinned (pageable) memory transfers. In the
default scenario (non-pinned) shown in the left part of the fig-
ure, data is copied from the pageable host memory to buffers
shared with the hardware accelerators. In case of paging-out,
pages will be copied between the non-volatile memory of the
system and the main memory. When using pinned memory
(right part of the figure), data is being shared between the

1 class ProcessImage {

2 void apply(int[] image) {

3 for (@Parallel int i = 0; i < SIZE; i++)

4 filter(image);

5 }

6 void run(int[] image) {

7 TaskSchedule ts = new TaskSchedule("image");

8 ts.streamIn(image)

9 .task("filter", this::apply, image)

10 .streamOut(image)

11 .execute();

12 }

13 }

Listing 1. Example in TornadoVM to illustrate the use of
batch processing.

host and the device via pinned buffers. Please note that in
reality, even when using pageable memory, generally, the
communication between the host and the accelerators take
place via interim pinned memory buffers (which requires
an extra memory copy operation) [26]. Modern GPUs sup-
port pinned memory allocation along with shared virtual
address space and unified memory. Therefore, many driver
implementations, such as Nvidia [27] and AMD [1], have
special guidelines that document the required steps to follow
in order to utilize these offerings.

Pinned memory in the context of a managed runtime, such
as the JVM, is currently challenging to use since there is no
way to instruct the memory management of the VM to allo-
cate pinned memory. To mitigate this limitation, Section 3.3
presents a novel approach that exploits OpenCL or CUDA
APIs to initialize off-heap pinned buffers to be utilized by
Java programs.

3 Optimizing Memory Management on
Heterogeneous MREs

This section introduces the memory optimizations we per-
formed in the context of heterogeneous MREs. In detail,
Section 3.1 introduces the notion of batch processing for
addressing the challenge of limited physical memory on
hardware accelerators, Section 3.2 explains the addition of
pipeline parallelism to batch processing, and finally Sec-
tion 3.3 extends both sequential and parallel batching with
pinned memory and off-heap memory buffers. Although, all
optimizations have been performed in the context of Tor-
nadoVM [13] and the Java programming language, they are
generally applicable to other heterogeneous MREs and pro-
gramming languages.

3.1 Batch Processing
This subsection provides a brief overview of the execution
model of TornadoVM emphasizing on the orchestration of



Enabling Pipeline Parallelism in Heterogeneous Managed Runtime Environments via Batch Processing VEE ’22, March 1, 2022, Virtual, Switzerland

heterogeneous execution. Furthermore, it introduces batch
processing as a mechanism to mitigate the inability to pro-
cess data sizes that exceed the physical memory of hardware
accelerators.

3.1.1 Orchestrating Heterogeneous Execution in Tor-
nadoVM. To motivate the use of batch processing as well
as explain its design and implementation details, we use
the example shown in Listing 1. The example shows a Java
class called ProcessImage that contains two Java methods.
The first method called apply (lines 2-5) contains the kernel
function to be offloaded and accelerated on the heteroge-
neous device (e.g., a GPU). Following the TornadoVM API,
this method applies a filter computation over an input buffer
(image). The second method, called run (lines 6-12), creates
a TaskSchedule Java object, for defining which Java meth-
ods should be accelerated (again following the TornadoVM
API). The task-schedule sets an input array (image) to be
copied in and out between the CPU and the device (lines
8 and 10). Furthermore, it defines a task that points to the
method apply from the same Java class (line 9). Finally, the
execution on the hardware accelerator is triggered in line 11
by the execute method.
Upon executing the task-schedule, TornadoVM will per-

form the following actions: (i) it will build a data-flow graph
to optimize the data transfers between the host and the target
device, and (ii) it will create a list of bytecodes that represents
the orchestration of the execution on the heterogeneous
hardware. As defined in [13], TornadoVM runs its generated
bytecodes in a bytecode interpreter on the main CPU as a
way of orchestrating the execution between the code run-
ning on the CPU and the accelerators. When running the
bytecode interpreter, TornadoVM allocates the input and out-
put buffers, performs the data transfers (data copy between
the CPU and the heterogeneous target device), performs the
runtime compilation (from Java bytecode to OpenCL and
PTX), and dispatches the generated code on the target device.
Listing 2 presents the TornadoVM bytecodes that corre-

spond to the input application shown Listing 1. As shown,
bytecode sections are enclosed in regions marked by the
BEGIN and END bytecodes. These bytecodes have an associ-
ated identifier (ID), which indicates the default index of the
device on which the application will be executed (e.g., on a
GPU with index 0). Line 2 executes the STREAM_IN bytecode
which performs a copy of the whole input array from the
host to the default device. Line 3 executes the parallel kernel
on the device with index 0 through the LAUNCH bytecode.
This bytecode must wait for the bytecode at index 2 (bci-2)
to finish before it gets executed. It is important to note that,
the first time the LAUNCH bytecode for a particular task is
executed, TornadoVM will compile the Java bytecode onto
OpenCL and PTX and execute the task. Since the majority
of the TornadoVM bytecodes are defined as non-blocking
operations, dependencies amongst them are satisfied by wait

1 BEGIN <0>

2 STREAM_IN <0, image>

3 LAUNCH task <0, bci-2, @ProcessImage::apply, image>

4 STREAM_OUT_BLOCKING <0, bci-3, image>

5 END <0>

Listing 2. TornadoVM bytecodes that represent the program
define in Listing 1.

operations on bci. Finally, line 4 performs a stream out (array
copy from the device to the host) operation.
As the authors explained in [13], TornadoVM assumes

that the input data fits into the memory of the target device.
Therefore, the buffer allocation and the thread dispatcher
are designed to send the whole data and create a block of
threads on the target device that maps the whole iteration
space, respectively. Any effort to allocate more memory than
physically present on the target hardware accelerator will re-
sult in an exception and execution will fall back to traditional
CPU-only.

3.1.2 Design and Implementation Details. We intro-
duce batch processing for optimizing kernels running with a
1D parallelism configuration on heterogeneous devices from
managed runtime systems. This type of computation corre-
sponds to expressions that can be executed with a map [9]
operator, in which each thread computes an input function
with a different item from the input data set. In this way,
data can be split in smaller chunks and compute exactly the
regions that are needed, allowing developers to process big
data applications on devices with limited memory.
Transparent batch processing on heterogeneous devices

can be achieved by: a) allowing data partitioning within
a task-schedule, and b) tuning the number of threads and
thread blocks that can be deployed on a hardware acceler-
ator. These two extensions are coupled together and could
potentially be applied to other heterogeneous runtime sys-
tems, besides TornadoVM in which they are prototyped. The
key parts that a runtime should support are the generation
of batches and the native allocation of pinned memory. Ad-
ditionally, the proposed technique can be exploited by any
OpenCL compatible device or PTX device.

API call for enabling batch processing. In order to en-
able batch processing for specific tasks or task-schedules, a
newAPI call within the TornadoVMAPI has been introduced.
More precisely, we introduced a new method called batch,
which receives one parameter that expresses the number of
bytes to be processed in each batch.
Listing 3 shows an example of the new API call that en-

ables batch processing to the code snippet presented in List-
ing 1. As shown in Line 3, the batch size is set to 256MB. This
call instructs the TornadoVM runtime and the TornadoVM
compiler to automatically split the input data in chunks and
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1 TaskSchedule ts = new TaskSchedule("image");

2 ts.streamIn(image)

3 .batch("256MB") // Enable batch processing

4 .task("filter", this::apply, image)

5 .streamOut(image)

6 .execute();

7 // image size: 268435456 integers (1073MB)

Listing 3. Enabling batch processing on heterogenous de-
vices with TornadoVM.

launch the corresponding kernels with an equivalent set of
threads to compute the required batch size. The data parti-
tioning and subsequent execution of the batches are applied
to the whole task-schedule expression, meaning that all tasks
that belong to the same task-schedule are going to be pro-
cessed using the same batch size. At a high-level, developers
only need to specify their preferred batch size. The runtime
will then split the assigned work in batches and coordinate
the execution. To illustrate our examples, we assume that the
input image occupies 1073MB (268435456 of Java integers).

Extending the bytecode interpreter for batch process-
ing. Besides the aforementioned API call, in order to enable
batch processing in TornadoVM, extensions were made to
its data-flow graph builder, bytecode generator, and com-
piler. Regarding the data-flow graph builder, it has been
augmented so that each node in the graph has the defined
batch size attached to it. Then, from the modified data-flow
graph, the runtime system generates the TornadoVM byte-
codes that orchestrate the execution on the heterogeneous
devices. The bytecode generation process has been altered
so that bytecodes can identify which batch (data partition)
to process. This is achieved by attaching offset informa-
tion and batch thread numbers to the STREAM_IN, COPY_IN,
LAUNCH, STREAM_OUT and STREAM_OUT_BLOCKING TornadoVM
bytecodes.
During bytecode generation, TornadoVM computes how

many data partitions to compute in order to satisfy the se-
lected batch size. It also computes the offsets for the input and
output data sets for each batch. Additionally, it computes
the block of threads that is needed to compute the input
batch for 1D map operations. This is because, as mentioned
in Section 3.1.2, the 1D map-computation that TornadoVM
exposes relates the input size with the number of threads to
be deployed on the hardware accelerator. Therefore, each
batch from the data partitioning relates to a specific block of
threads that will be executed.

Data management and compilation of batches. List-
ing 4 shows the list of bytecodes generated from the modified
system when batch processing is enabled; again using the
example shown in Listing 3. In this example, TornadoVM
applies an image-filter to 1073MB of input data represented

as an array of integers (268435456 integers). Additionally,
TornadoVM has been configured to utilize 1024MB of mem-
ory on the hardware accelerator. Since the batch size is set to
256MB, the runtime generates four batches of 256MB each
and a fifth one of 49MB.

Listing 4 displays the meta-information attached to byte-
codes corresponding to the processing of each batch. The
first block of bytecodes (batch 1) processes 256MB of data
starting from offset 0, and it launches 64 million threads
on the target device. Similarly, the second block copies the
data region of the next 256MB of data, and it also launches
the execution with a block size of 64 million threads. This
process is repeated until all blocks have been completed.

Most of the bytecodes are non-blocking, which means that
the operations of stream-in, launch, and stream-out can be
overlapped enabling pipeline parallelism (explained further
in Section 3.2).

Regarding JIT compilation (from Java bytecode to OpenCL
or PTX), the runtime system compiles the code of the first
batch, when the first LAUNCH is computed. Since all blocks,
except the last one, are processing the same batch size, the
code can be reused between them. If all batches were equally-
sized, then the runtime system will reuse the code generated
from the first batch for all batches. However, if a batch-size
differs, then the runtime system will trigger a recompilation
just for that one; in our example that would be batch number
five. The reason behind the recompilation is that TornadoVM
performs partial evaluation [16] for some expressions result-
ing in constant propagation in the generated code in order
to achieve better performance. Hence, if array boundaries
change (as it happens in our example), then the code will be
re-compiled and re-optimized. The aforementioned on-the-
fly re-compilation technique has been added to TornadoVM
as part of the batch processing optimization.

Limitations. Although the proposed approach enables
developers to execute expressions with data sets that can
exceed the memory capacities of accelerators, it has the fol-
lowing limitations: (i) it only supports 1D-range compute
kernels, and (ii) all arrays passed to the tasks within a task-
schedule must have the same size since the batch generator
and the kernel thread dispatch assumes that all input buffers
are equally sized. Both aforementioned limitations are part
of the future work since they are mostly engineering chal-
lenges that can be addressed as follows: for (i) further data
dependency analysis phases can be added in order to support
2D and 3D ranges as well as add support for data broadcast-
ing across batches via an API call, for (ii) developers can
create separate task-schedules of different data sizes.

3.2 Parallel Batch Processing
As explained in the previous subsection, the introduction of
batch processing in combination with the asynchronous na-
ture of the TornadoVM bytecodes creates an opportunity for
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1 bci-0: BEGIN <0>

2 // batch 1

3 bci-1: STREAM_IN <0, image, offset:0, size:256MB>

4 bci-2: LAUNCH task <0, bci-2, @apply, image,

5 thread:64M>

6 bci-3: STREAM_OUT <0, bci-3, image, offset:0,

7 size:1024>

8 // batch 2

9 bci-4: STREAM_IN <0, image, offset:256MB, size:256MB>

10 bci-5: LAUNCH task <0, bci-5, @apply, image,

11 thread:64M>

12 bci-6: STREAM_OUT <0, bci-6, image, offset:256MB,

13 size:256MB>

14 // batch 3

15 bci-7: STREAM_IN <0, image, offset:512MB, size:256MB>

16 bci-8: LAUNCH task <0, bci-8, @apply, image,

17 thread:64M>

18 bci-9: STREAM_OUT <0, bci-9, image, offset:512MB,

19 size:256MB>

20 // batch 4

21 bci-10: STREAM_IN <0, image, offset:768MB, size:256MB>

22 bci-11: LAUNCH task <0, bci-12, @apply, image,

23 thread:64M>

24 bci-12: STREAM_OUT <0, bci-13, image, offset:768MB,

25 size:256MB>

26 // batch 5

27 bci-13: STREAM_IN <0, image, offset:1024MB, size:49MB>

28 bci-14: LAUNCH task <0, bci-15, @apply, image,

29 thread:12435456>

30 bci-15: STREAM_OUT_BLOCKING <0, bci-16, image,

31 offset:1024MB, size:49MB>

32 bci-16: END <0>

Listing 4. Generated TornadoVM bytecodes when batch
processing is enabled.

exploiting pipeline parallelism by overlapping data transfers
and computation. In this subsection we describe the changes
made to TornadoVM to enable parallel batch processing.

Batching in a single stream. By default, TornadoVM
operates with one command queue (or a single stream) in
which commands for read, write, and execute to/from the
device are enqueued. After the various commands are en-
queued, their execution relies on the underlying target het-
erogeneous programming models that are supported by Tor-
nadoVM (OpenCL and CUDA). In this scenario, when batch
processing is enabled, multiple instances of the same ker-
nel are submitted in the command queue; one instance per
batch. All data transfers associated with a batch, as well as
the memory accesses performed by a kernel instance, oper-
ate only on a single memory segment that is assigned to this
batch. When performing in-order batching, the same mem-
ory segment is assigned to all batches and all batches are

Figure 3. Parallel batch processing in TornadoVM.

executed sequentially, meaning that each command within
the command queue is executed in-order.

Parallel batchingwithmultiple streams. The proposed
parallel batch processing technique exploits the concurrent
launching of multiple commands via different command
queues (or streams). While a kernel is served by a command
queue, a second command queue can perform a data transfer
between the host and the device memories. Thus, parallel
batch processing enables the overlap of kernel execution
with data transfers, thereby resulting in lower end-to-end
execution time and higher hardware utilization.
Figure 3 illustrates how parallel batch processing is per-

formed. In this example, we consider the execution of three
batches, while the device memory space (device heap) can
only fit two batches. The first batch occupies the first seg-
ment of the device heap, while the second batch occupies
the second. Furthermore, each batch of the input array uses
a separate command queue. Due to the fact that the device
heap in this example fits only two batches, the remaining
batch will be enqueued by the first command queue; and
therefore, it will use the first memory segment.
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3.3 Batching with Pinned Memory
As described in subsection 2.3.2, performing asynchronous
data transfers between a host and a hardware accelerator
is an unsafe operation in the context of MREs. The garbage
collector can move the data to a different location during the
transfer, thus causing invalid data to be copied and result
in corrupted memory. Since, by design, there is no straight-
forward way to pin an object in the JVM heap without pre-
venting garbage collection, an alternative is to use off-heap
buffers as mentioned in subsection 2.3.2.
To mitigate this limitation, in this subsection we intro-

duce another optimization that complements parallel batch
processing for allowing the batches to be allocated outside
the JVM heap and utilize page-locked (pinned) memory. To
enable this optimization: (i) the batch memory allocator
has been integrated with a new Java native API (Project
Panama [30]), and (ii) new compiler phases that translate
CPU native memory accesses into GPU memory accesses
have been added to the TornadoVM JIT compiler.

3.3.1 Off-Heap Buffers. Off-heap memory buffers are
not managed directly by the JVM and therefore the garbage
collector will not be moving objects residing in them. For
implementation purposes we utilize the newly introduced
off-heap memory allocation capabilities of OpenJDK in the
context of Project Panama [30]. Project Panama is an Open-
JDK project designed to provide a new API for interconnect-
ing Java with native code and includes multiple components
such as: (i) support for native function calls, (ii) native li-
brary management APIs, and (iii) header file extraction tools.
The proposed technique has been prototyped as a method
in the TornadoVM API which allows the allocation of both
non-pinned or pinned off-heap buffers (or MemorySegments
following the Project Panama naming convention).
As part of this new approach, Project Panama provides

an API to create MemorySegments that are allocated off-heap.
Consequently, the TornadoVM API has been enhanced to
allow allocation of off-heap buffers that are backed by a
buffer on the target device. Listing 5 presents an example
of the enhanced TornadoVM API which is capable of allo-
cating off-heap memory regions. This example copies the
contents of a memory segment (msA) that is allocated in
off-heap memory to a second memory region (msB) that is
also allocated in off-heap memory. Lines 1-7 present the
method that copies the contents of the input array to the out-
put array. Both arrays are declared to be a MemorySegment

object (named in and out). Consequently, lines 12 and 13
show how the TornadoVM API has been extended to al-
locate off-heap memory space pointed by MemorySegment

of a given size. The getOffHeapBuffer API method ac-
cepts as input the selected device for which memory will
be allocated along with the required size for the alloca-
tion. In turn, the allocated buffers are forwarded in the

1 void copy(MemorySegment in, MemorySegment out,

2 int size) {

3 for (int i = 0; i < size; i++) {

4 value = MemoryAccess.getIntAtIndex(in, i);

5 MemoryAccess.setIntAtIndex(out, i, value);

6 }

7 }

8

9 void run(TornadoRuntime rt, Device device, int size)

10 {

11 MemorySegment msA, msB;

12 msA = rt.getOffHeapBuffer(device, size);

13 msB = rt.getOffHeapBuffer(device, size);

14 copy(msA, msB, size);

15 }

Listing 5. Off-heap memory allocation in TornadoVM.
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Figure 4.Workflow of our runtime to enable pinnedmemory
for off-heap buffers using MemoryRegions from the Panama
Project.

copy method (line 14). A task can read and write the al-
located arrays via the MemoryAccess::getIntAtIndex and
MemoryAccess::setIntAtIndex functions in lines 4 and 5,
respectively.

3.3.2 Non-Pinned or Pinned Memory Allocation. The
proposed approach for off-heap memory allocation is de-
signed to support both pinned and non-pinnedmemory since
both implementations have advantages and disadvantages.
For example, although pinned memory can increase the per-
formance of data transfers the fact that it is page-locked can
potentially result in overall system performance degradation
if multiple processes are running concurrently [40].

Pinned memory must be allocated through the driver API
(either with OpenCL or CUDA driver APIs) and, to the best
of our knowledge, current JVMs do not provide a way to
allocate objects in different memory pools or even to define
such memory pools. Hence, we implemented a method that
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selected between pinned and non-pinned memory allocation
based on a runtime flag that can be also set by developers.
Figure 4 shows the workflow of our runtime system for

allocating pinned memory segments that are accessed from
both the host and the target hardware accelerator. This work-
flow is valid for both OpenCL and CUDA backends. Themain
entity is the segment provider, which is a data type for stor-
ing and maintaining pointers between the host and device.

The process for requesting pinned memory segments with
pinned memory is as follows: First, 1 the device execution
context allocates a buffer on the device that is associated
with the pinned memory. Then, 2 the runtime system reg-
isters the device buffer address and the buffer size in the
segment provider. Note that the execution context maintains
an instance object of a segment provider per buffer being
used, and it can be accessed by the runtime system for per-
forming the data management. Besides, the size of the device
buffer should be the same as the host buffer. The address of
the allocated device buffer is used later by the runtime to
perform the actual mapping for data transfers from the host.
Then, in step 3 , the JVM memory provider allocates off-
heap buffers using pinnedmemory from the main memory of
the CPU system (host side). This address, along with the size
of the host buffer are also registered in the segment provider
(step 4 ). In step 5 , the Panama API is utilized to obtain
a raw address of the host buffer and instantiate a memory
segment object. Finally, in step 6 , the allocated segment
that points to the allocated off-heap pinned memory space
is registered along with the runtime information stored in
the segment provider. The allocated segment is returned to
the application level. Note that the runtime system creates
an instance of a JVM memory provider entity per utilized
buffer, and the corresponding instance of the memory seg-
ment. As an example, step 6 takes two object instances, one
for the segment provider (sp1), and the other for a memory
segment instantiation (ms1). These objects are stored in a
table (implemented as a hash-map), as they are represented
at the bottom-right part of Figure 4.

3.3.3 Compiler Support for Off-Heap Memory Re-
gions. Besides the allocation of off-heap buffers, the Tor-
nadoVM compiler has been also extended with custom com-
piler intrinsincs in the way of compiler snippets [38]. These
intrinsincs are responsible for replacing the memory ac-
cess operations (i.e., read, write) that are performed on a
MemorySegment object with read/write instructions accord-
ing to the target backend (OpenCL or PTX). This replace-
ment is performed transparently by the compiler enabling
the accessibility of off-heap allocated memory from a kernel
running on a heterogeneous device.

4 Experimental Evaluation
To evaluate the performance of the proposed sequential and
parallel batch processing as well as the impact of utilizing

Table 1. Hardware/Software testbed characteristics.
CPU Intel(R) Core(TM) i7-9750H @ 4.5 GHz
Main Memory 32 GB
GPU Nvidia GeForce GTX 1650
GPU RAM 4 GB
PCIe Gen3 (16 lanes)
Hard Drive Toshiba NVMe SSD (1 TB)
JVM OpenJDK 16 GraalVM CE 21.1.0
JVM Heap Size 16 GB
OS Ubuntu 20.04
OpenCL Driver OpenCL 3.0 CUDA 11.4.94
CUDA Driver 470.57.02

pinned memory, we conducted experiments that assess per-
formance on an Nvidia GPU for all TornadoVM backends
(OpenCL, PTX). Besides completeness, one of the reasons
we evaluate both OpenCL and PTX backends is to discover
if there are any differences between them, in terms of per-
formance. Table 1 presents the specifications of our testbed
along with the configuration of the JVM that we used to
run all the benchmarks (Section 4.1). For each experiment,
we performed a warm-up process that includes 10 iterative
executions, which are sufficient to ensure that the code is
JIT compiled by the TornadoVM compiler for all implemen-
tations. The reported results are the average execution times
of the next 100 executions. Additionally, to ensure fair com-
parisons, we performed our experiments for 1 GB of data,
as this is the maximum amount of data that the baseline
implementation supports. Throughout the evaluation of our
experiments, we used two classes of batch sizes (small with a
size of 32 MB, and large with a size of 512 MB) for all bench-
marks. Thus, the transaction of 1 GB of data results inmoving
32 small batches or 2 large batches, accordingly. Section 4.2
presents the comparative analysis of all implementations.
Nonetheless, the proposed techniques of sequential and par-
allel batch processing along with pinned memory have been
evaluated for large data sizes that exceed the memory capac-
ity of the hardware accelerator (e.g., GPU RAM), as discussed
in Section 4.3.

4.1 Benchmark Applications
In our experiments, we used five applications that belong to a
wide range of domain areas, ranging from mathematical and
financial applications to physics and linear algebra. Saxpy
executes a linear algebra operation that scales a vector by
a scalar value and adds the interim result to a second vec-
tor, while Hilbert is used to perform matrix computations.
Black&White is an image processing algorithm that trans-
forms the illustration of a colored image in black and white
color variants. Blacksholes is a mathematical model used
in the financial market to calculate theoretical estimates of
prices in order to eliminate risks. Montecarlo is a simulation
method used to solve mathematical and physical problems
based on iterative random sampling. This set of benchmarks
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(a) Small batch size in OpenCL.
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(b) Large batch size in OpenCL.
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(c) Small batch size in PTX.
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(d) Large batch size in PTX.
Figure 5. Relative performance of sequential and parallel batch processing combined with pinned and non pinned memory,
against the system that implements no batch processing and non pinned memory. The higher, the better. The figures are
classified based on the TornadoVM backend (OpenCL at the top, PTX at the bottom).

allows us to observe the performance of the proposed tech-
niques in different scenarios as well as highlight the strength
and weaknesses of the proposed approaches. For instance,
Saxpy and Hilbert require a large amount of data to be copied
while the computation is not too significant. On the other
hand, Black&White and BlackScholes offer higher degree of
computation that can be performed in parallel. Finally, Mon-
tecarlo accepts as input an array that contains seed numbers
used for generating the simulation data which are processed
in parallel.

4.2 Performance Analysis
Figure 5 presents the relative performance for each configu-
ration of batch processing (no/sequential/parallel) and the
utilization of pinned or non pinned memory; against the base-
line which uses no batch processing and non pinned memory.
We conducted the same experiment for two TornadoVM
backends (OpenCL at the top, PTX at the bottom) and for
small (Figures 5a & 5c) or large (Figures 5b & 5d) batch sizes,
respectively. The relative comparison against the different
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configurations is obtained by timing the end-to-end execu-
tion time of each configuration on the same environment.

Pinned Memory. The first bar in Figures 5a & 5b (de-
picted in black) shows that the utilization of pinned memory
can increase the performance of the baseline system (No
Batches/Non Pinned) in OpenCL from 16% (Montecarlo) to
20% (Saxpy). Similarly, for the PTX implementation pinned
memory can yield performance improvements ranging from
10% (Montecarlo) to 14% (Saxpy, Black&White, Hilbert), as
shown in Figures 5c & 5d. Note that the performance of
the No Batches/Pinned implementation is the same for both
small and large batch sizes, since it does not split data into
batches. However, we report it for both cases to reflect on
the improvement of the batch processing technique when
pinned memory is also applied.

Sequential Batches and Non Pinned Memory. Another
interesting remark is that the Sequential Batches/Non Pinned
implementation achieves the lowest performance across both
backends (OpenCL, PTX) in Figure 5. This indicates that the
time consumed in splitting the data as well as the fact that
batches are executed sequentially result in performance de-
crease. In particular, the performance loss in OpenCL against
the baseline is up to 15% (Figure 5a - Black&White) and 4%
(Figure 5b - Saxpy, Hilbert, Montecarlo) for small and large
batch sizes, respectively. However, when pinned memory is
applied, the Sequential Batches/Pinned configuration show-
cases up to 1.2𝑥 performance speedup (Figures 5a & 5b -
BlackScholes) against the baseline. Similarly OpenCL, the Se-
quential Batches/Non Pinned implementation in PTX results
to up to 3% (Figure 5c - Black&White) performance loss for
small batch sizes, while for the large batch size (Figure 5d) the
performance is identical to the baseline performance. Addi-
tionally, when pinned memory is combined with sequential
batch processing the system achieves performance speedup
against the baseline which ranges from 1.08𝑥 (Montecarlo)
to 1.13𝑥 (Hilbert) in small batch sizes (Figure 5c), and up to
1.14𝑥 for large batch sizes (Figure 5d - Black&White).

Parallel Batches and Non PinnedMemory. The Parallel
Batches/Non Pinned evaluation shows that the performance
in OpenCL against the baseline ranges from 0.95𝑥 (BlackSc-
holes) to 1.35𝑥 (Montecarlo) for small batch sizes (Figure 5a).
For large batch sizes, the overall performance against the
baseline drops up to 5% (Montecarlo). Similarly to OpenCL,
the performance of the Parallel Batches/Non Pinned imple-
mentation in PTX against baseline drops up to 3.5% (Figure 5c
- Black&White) for small batch sizes, while performing iden-
tically for large batch sizes (Figure 5d). The rationale for the
low performance of the Parallel Batches/Non Pinned imple-
mentation is that non pinned data movements are slower
than pinned (will be discussed in Section 4.2.1), thereby re-
sulting in less overlapping and limited parallel execution of
batches on the GPU. In our experiment, we observed that by
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enabling pinned memory, the overlapping for small batch
sizes increases up to 72%.
Finally, the combination of pinned memory and parallel

batch processing outperforms the baseline implementation in
OpenCL by 2.6𝑥 (Figure 5a -Montecarlo) and 1.68𝑥 (Figure 5b
- Montecarlo) for small and large batch sizes, respectively.
Similarly to OpenCL, this configuration in PTX achieves
speedups, against the baseline, of up to 2.56𝑥 (Figure 5c -
Montecarlo) and 1.58𝑥 (Figure 5d - Montecarlo) for small
and large batch sizes, accordingly.

4.2.1 Analysis of Pinned Data Transfers. As shown in
the previous subsection, pinned memory enables the batch
processing techniques to perform better than non pinned
memory. The reason is that pinned memory can enable data
transfers through DMA. To better understand the impact of
pinnedmemory, we performed a study that compares the per-
formance of pinned data transfers against non pinned. Our
analysis focuses on the performance of the data transactions
which occurred when we run the Black&White application
for 1GB of data, as presented in the previous section.

Performance of copies from host to device. Figure 6
presents the total time for performing the copy of 1GB of
data from the host memory to the device memory (COPY_IN),
when using small and large batch sizes. For non pinned
transactions (black bars) the PTX backend performs up to
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10% and 7% faster than OpenCL for small and large batch
sizes, respectively. For the small batch size, pinned memory
results in increasing the performance of data copying from
host to device by up to 31% in OpenCL (from 104 ms to
79.1 ms); and up to 19.5% in PTX (from 94.7 ms to 79.2 ms).
Furthermore, pinned memory combined with a large batch
size yields up to 25% and 16.6% performance improvement for
OpenCL and PTX, respectively. A last remark is that pinned
data copies (grey bars) take approximately the same time
(around 79 ms) for both OpenCL and PTX implementations.

Performance of copies from device to host. Figure 7
presents the time for transferring data from the device mem-
ory back to the host (COPY_OUT). The performance trend in
this case is similar to the reverse data transfer (Figure 6). For
non pinned data transfers, the OpenCL implementation that
uses a small batch size is 10 ms slower compared to using a
large batch size. On the contrary, the PTX implementations
for small and large batch sizes present a deviation of 3 ms,
ranging from 93.08 ms to 90.05 ms. For the small batch size,
the data transfers performed by the CUDA driver are 24%
faster than OpenCL, while for the large batch size they im-
prove by 16.7%. This performance behavior is attributed to
the actual implementation of the CUDA and OpenCL drivers.
Nonetheless, for pinned data transfers both drivers exhibit
similar performance (around 78.5 ms) for both small and
large batch sizes.

4.3 Going beyond the GPU Memory Capacity
To study the performance of the proposed batch processing
techniques (i.e., sequential and parallel) for large data sizes,
we performed an experiment that increases the data size to 8
GB (twice the GPU memory capacity) and compares it to the
performance of 1 GB of data (shown previously in Figure 5).
In this experiment, we examined the performance for the
small batch size, as this size results in higher overlapping
between the data transfers and the computation performed
on the GPU. Due to the fact that the OpenCL programming
model does not allow the allocation of pinned memory for
sizes that go beyond to the 25% of the actual memory ca-
pacity in the device [17], we were not able to conduct this
experiment for OpenCL. Therefore, the rest of this section
focuses on PTX, and in particular the involvement of the
CUDA driver for performing the pinned and non pinned data
transfers.

Figure 8 presents the relative speedup of the sequential and
parallel batch processing techniques that utilize pinned mem-
ory against their corresponding implementation with non
pinned memory (the higher, the better). We observe that the
performance achieved with the sequential batch processing
technique with pinned memory enabled is at the same level
(up to 1.18𝑥 for Black&White), while increasing the data size
from 1 GB to 8 GB. The parallel batch processing technique
also demonstrates the efficiency of the proposed technique
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Figure 8. Relative performance of pinned memory against
non pinned implementations for different data sizes in PTX.

for 8 GB of data, as it results in performance improvements
ranging from 1.52𝑥 (Hilbert) to 2.34𝑥 (Montecarlo). The re-
sults shown in Figure 8 showcase that the proposed batch
processing techniques enable applications to utilize volumes
of data that exceed the physical memory capacity of the
hardware device; a capability can be extremely beneficial, es-
pecially for Java-based Big Data frameworks such as Apache
Spark [25, 28] and Flink[3, 5].

5 Related Work
This section discusses the related work regarding data trans-
fer optimizations in the context of heterogeneous managed
runtime systems. Batch processing and pinned memory are
techniques that have been extensively studied during the
past years [18, 24, 35, 36, 39] for programming frameworks
based on unmanaged programming environments, such as
C/C++, CUDA, and OpenCL. However, limited research has
been conducted in applying these techniques to managed
programming languages, such as Java, .NET, Python, etc.
This is, in part, due to the complexity of managed runtime
systems regarding memory management and garbage col-
lection. One way to circumvent this challenge is to allow
the use of off-heap memory. However, this memory area
needs to be handled efficiently and explicitly by develop-
ers. To the best of our knowledge, this is the first work that
proposes a technique for combining batch processing for
overlapping computation and communication along with
the use of pinned memory.

There exist solutions for GPU and FPGA acceleration from
managed runtime programming languages. Aparapi [2] is a
parallel programming framework for GPU compute within
Java using on-heap arrays. Similarly, IBM J9 [21] enables
expressions written with the Java Stream 8 API to execute
on GPUs via CUDA PTX. IBM J9 uses on-heap arrays and pre-
compiled kernels for some of the functions and it does not
support pinned memory. Similarly, other Java approaches
such as Rootbeer [34] and JaBEE [42] follow the same trend.
Finally, Habanero-Java (HB) [19] is a parallel programming
language based on Java that enables GPU compute.
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Concurnas [6] is a new programming language built on
top of the JVM designed to make use of modern hardware.
Concurnas uses off-heap and non-pinned arrays that are
directly exposed to developers. However, the whole memory
management between the accelerator and JVM is handled by
developers (memory copies, synchronization and clean-up).

The techniques described in this paper are complementary
and applicable to the aforementioned systems.

Batch Processing and Pinned Memory from MRE. The
most related work regarding batch processing and pinned
memory is Marawacc [12, 15] a runtime system and a JIT
compiler for offloading Java bytecodes toOpenCL-compatible
hardware. Marawacc exposes an API to developers that al-
lows the transparent use of off-heap and OpenCL pinned
memory buffers. Marawacc internally enables batch process-
ing only when the input application does not fit on the device
memory. Similarly, R-GPU uses transparent pinned memory
and batch processing for large arrays in R [14]. Our proposed
approach is more general in the sense that developers can
control batch sizes, allowing applications to share the same
device. Additionally, Marawacc does not support multiple
command queues to overlap data with communications. In
contrast to Marawacc and R-GPU, the proposed work in this
paper enables batch processing even if the data size does
not exceed the physical memory capacity of the GPU; and
supports parallel batch processing.
Dandelion [37] is a parallel programming framework for

the .NET execution environment that uses different commu-
nication channels to perform data communications between
CPUs and GPUs via different execution engines. While au-
thors do not explicitly define Dandelion as a system that can
overlap communication and computation, the fact that it uses
different channels may allow the runtime system to perform
such optimization, in a similar manner as proposed in this
paper. Regardless, the work proposed in this paper allows
the combination of parallel batching with pinned memory.

6 Conclusions
In this paper, we discuss the limitations and challenges of
memory management in managed runtime environments
(MREs) with regards to heterogeneous hardware accelera-
tion. To address a number of these challenges, this paper
introduces two main approaches that optimize the perfor-
mance of data transfers in heterogeneous MREs. The first
approach, called batch processing, enables the utilization
of data sizes that exceed the physical memory present on
hardware accelerators. The second approach improves batch
processing by adding pipeline parallelism which allows the
runtime system to overlap communication with computation
to increase performance. Finally, it demonstrates a strategy to
combine parallel batch processing with pinned memory that
enable fast DMA data transfers ensuring that the allocated
memory pages will not be paged out. The aforementioned

optimizations have been implemented in the context of the
state-of-the-art TornadoVM and have been evaluated across
a diverse set of benchmarks. The performance evaluation
showcases that when all optimizations are combined, end-
to-end speedups of up to 2.5x are achieved compared to the
baseline implementation.
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