
Just-In-Time GPU Compilation for
Interpreted Languages with Partial Evaluation

Juan Fumero† Michel Steuwer† Lukas Stadler∗ Christophe Dubach†
†The University of Edinburgh, ∗Oracle Labs, AT

juan.fumero@ed.ac.uk michel.steuwer@ed.ac.uk lukas.stadler@oracle.com christophe.dubach@ed.ac.uk

Abstract
Computer systems are increasingly featuring powerful par-
allel devices with the advent of many-core CPUs and GPUs.
This offers the opportunity to solve computationally-intensive
problems at a fraction of the time traditional CPUs need.
However, exploiting heterogeneous hardware requires the
use of low-level programming language approaches such as
OpenCL, which is incredibly challenging, even for advanced
programmers.

On the application side, interpreted dynamic languages
are increasingly becoming popular in many domains due to
their simplicity, expressiveness and flexibility. However, this
creates a wide gap between the high-level abstractions of-
fered to programmers and the low-level hardware-specific
interface. Currently, programmers must rely on high perfor-
mance libraries or they are forced to write parts of their ap-
plication in a low-level language like OpenCL. Ideally, non-
expert programmers should be able to exploit heterogeneous
hardware directly from their interpreted dynamic languages.

In this paper, we present a technique to transparently
and automatically offload computations from interpreted dy-
namic languages to heterogeneous devices. Using just-in-
time compilation, we automatically generate OpenCL code
at runtime which is specialized to the actual observed data
types using profiling information. We demonstrate our tech-
nique using R, which is a popular interpreted dynamic lan-
guage predominately used in big data analytic. Our experi-
mental results show the execution on a GPU yields speedups
of over 150x compared to the sequential FastR implementa-
tion and the obtained performance is competitive with man-
ually written GPU code. We also show that when taking into
account start-up time, large speedups are achievable, even
when the applications run for as little as a few seconds.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

VEE ’17, April 08 - 09, 2017, Xi’an, China
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4948-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3050748.3050761

1. Introduction
Nowadays, most computer systems are equipped with pow-
erful parallel devices such as Graphics Processing Units
(GPUs). Many application domains benefit by achieving or-
ders of magnitude speedup over parallel CPU code. How-
ever, exploiting this hardware requires a deep knowledge of
the architectures and low-level languages such as OpenCL,
which is very challenging for non-expert programmers.

Many non-computer scientists prefer using interpreted
languages such as Ruby, Python or R which are hugely pop-
ular despite their poor performance. They offer high-level
functionality and simplicity of use, and the interpreter en-
ables fast iterative software development. However, exploit-
ing a GPU from these languages is far from trivial since pro-
grammers either have to write the GPU kernels themselves
or rely on third-party GPU accelerated libraries.

Ideally, an interpreter for a dynamic programming lan-
guage would be able to exploit the GPU automatically and
transparently. A possible solution is to port the interpreter
to the GPU and directly interpret the input program on the
GPU. Unfortunately, this naïve solution is not practical since
many parts of the interpreter are hard to port to a GPU such
as method dispatch and object representation.

Partial evaluation has emerged as an important tech-
nique to improve interpreters’ performance on CPUs [22,
23]. Such techniques specialize the interpreter to the appli-
cation using Just-In-Time (JIT) compilation and profiling in-
formation. Using partial evaluation, the code produced be-
comes specialized to the actual observed data and to the hot
path in the control-flow as in a trace-based compiler [6]. As a
result, most of the interpreter code is compiled away, leaving
only the actual application logic and computation.

In this work, we propose to extend these techniques for
GPU code generation. We show how to produce OpenCL
code at runtime for dynamic interpreted languages to accel-
erate programs with minimal effort for the language imple-
menter. This is achieved using partial evaluation which spe-
cialized the program using profiling information. The spe-
cialized program becomes much easier to compile to the
GPU since most high-level language constructs and inter-
preter code are removed away.

Using R as a use case, we extend the existing FastR [18]
interpreter which is built upon the Truffle framework [23]
and we use the Graal [2] JIT compiler to produce OpenCL
code. The R interpreter is modified slightly to detect parallel
operations and represent them as parallel nodes in the Ab-
stract Syntax Tree (AST) interpreter. When a piece of R code
is executed multiple times, the Truffle interpreter special-
izes the AST using profiling information and transforms it
into the Graal Intermediate Representation (IR) using partial
evaluation. The Graal IR is then intercepted and a series of
passes is applied to simplify the IR as much as possible and
the code generator attempts to produce an OpenCL GPU ker-
nel. If the JIT compilation process fails due to unsupported
features, controls return to the interpreter automatically and
safely using the existing de-optimization process [7, 11, 23].

Our experimental results show that it is possible to accel-
erate R programs on the GPU automatically with large gains
in performance. We achieve an average of 150x speed-up at
peak performance when using the GPU compared to the run-
time of the FastR interpreter on the CPU. Impressively, we
still achieve an average of 57x speed-up in a realistic sce-
nario where we include all startup time, OpenCL compila-
tion time and OpenCL device initialization costs.

To summarize, the contributions of this paper are:

• We present an OpenCL JIT compiler for the FastR inter-
preter using Truffle and Graal.

• We present a technique for simplifying the Graal inter-
mediate representation for OpenCL code generation.

• We demonstrate that this approach delivers high speedup
on a set of R applications running on GPUs and it is
compared with the standard de-facto GNU-R, FastR and
OpenCL C++ implementations.

2. Background
Truffle [23] is a framework for implementing programming
languages on top of a Java Virtual Machine (JVM). The
Truffle API contains various building blocks for a language’s
runtime environment and provides infrastructure for manag-
ing executable code, mainly in the form of abstract syntax
trees (ASTs).

2.1 AST Interpreters with Truffle
AST interpreters are a simple and straightforward technique
to build an execution engine for a programming language.
The source code is transformed into a tree of nodes, and the
execute method of each node defines its behavior.

For dynamic programming languages, even seemingly
simple operations such as adding two values can perform
a multitude of different tasks depending on the input value
types and the overall state of the runtime system. The Truf-
fle AST nodes start out in an uninitialized state and replace
themselves with specialized versions geared towards the spe-
cific input data that were encountered during execution. As

new situations are encountered, the AST nodes are progres-
sively made more generic to incorporate the handling of
more inputs in their specialized behavior. At any point in
time, the AST encodes the minimal amount of functionality
needed to run the program with the inputs encountered so
far. Most applications quickly reach a stable state where no
new input types are discovered.

Writing nodes that specialize themselves involves a large
amount of boilerplate code that is tedious to write and hard to
get right under all circumstances. The Truffle DSL provides
a small but powerful set of declarative annotations used to
generate this code automatically.

2.2 Efficient JIT Compilation with Graal
The specialization of AST nodes together with the Truf-
fle DSL allow the interpreter to run efficiently, e.g., to
avoid boxing primitive values in certain situations. However,
the inherent overhead of an interpreter which dispatches
execute calls to the AST nodes cannot be removed.

To address this, Truffle employs Graal [23] for generating
optimized machine code. Graal is a byte-code to native code
JIT compiler implemented in Java, which can replace the
client [12] and server [14] compilers in the HotSpot JVM. It
transforms byte-code to the high-level GraalIR [2] interme-
diate representation, optimizes the IR, and transforms it to a
low-level intermediate representation, before finally gener-
ating executable machine code for various platforms.

When Truffle detects that the number of times an AST
was executed exceeds a certain threshold, it will submit
the AST to Graal for compilation. Graal compiles the AST
using partial evaluation [5], which essentially inlines all
execute methods into one compilation unit and incorporates
the current state of the AST to generate a piece of native code
that works for all data types encountered so far. If new data
types are encountered, the compiled code will deoptimize [7]
and control will be transferred back to the interpreter which
modifies the AST to accommodate the new data types. The
AST is then recompiled with the additional functionality.

2.3 Example in FastR
Figure 1 shows a program executed using FastR, an imple-
mentation of the R language built using Truffle and Graal.

The program shown in the upper left corner executes
a function for each pair of elements from vectors a and
b using the mapply function. On execution, FastR creates
the AST of the function passed to mapply, as shown on
the left side of the figure. This AST is generic and not yet
specialized to the input data used in the execution.

As it is executed, the AST rewrites itself to the state
that is shown in the middle of Figure 1. The addition and
multiplication nodes are specialized for the double data used
in the example. The AddDoubleNode shown in the top right
corner is the variant of the addition node specialized for
double values. FastR calls the execute methods of the AST
nodes inside the interpreter.

Function: f

Body

Write: result

Read (x)

Read (y)

RCall: return

Mult double

Add double

Specialization

class AddDoubleNode {
 @CompilationFinal boolean lMightBeNA; //false
 @CompilationFinal boolean rMightBeNa; //false
 double execute(double l, double r) {
 if (lMightBeNa && isNa(l))
 return RDouble.NA;
 if (rMightBeNa && isNa(r))
 return RDouble.NA;
 return l + r;
 }
}

Constant (0.12)

Function

Body

Write: result

Read (x)

Read (y)

RCall: return

Mult double

Add double

Constant (0.12)

Function

Body

Write: result

Read (x)

Read (y)

RCall: return

Mult Generic

Add Generic

Constant (0.12)

start
Unbox

Unbox

p(0)

p(1)

Add(+)

Mult(*)

Box
Return

0.12

Graal IR

Partial Evaluation
(+ optimizations)

Add node interpreter implementation (Java code)

Truffle / FastR AST

R program

a ← runif(size); b ← runif(size);
mapply(function(x, y) { 0.12 * x + y} , a, b)

Parsing

Truffle / FastR AST

Figure 1: Execution of an R program in FastR via Truffle and Graal.

In order to respect the semantics of the R language,
the AddDoubleNode needs to handle NA (not available) val-
ues. NA is a special marker that represents the absence
of a value, e.g., a missing value inside a collection. The
execute method of AddDoubleNode handles NAs by return-
ing RDdouble.NA when one of the two operands is NA itself.

As an optimization, the infrastructure that performs
arithmetic operations on vectors sets the lMightBeNA and
rMightBeNA fields to true only if a vector that may contain
NAs was encountered as an operand. As long as these flags
remain false, no checks for NA values in the operands are
necessary. Truffle uses compiler directives to convey this in-
formation to an optimizing runtime. The CompilationFinal

directive is used in the example to indicate that the Boolean
values can be assumed to be constant during compilation.

The partial evaluation performed by Graal transforms the
FastR AST into the Graal IR shown on the lower right of Fig-
ure 1. Information specified in the compiler directives is used
by the partial evaluation to perform optimizations. In the ex-
ample, both branches visible in the node’s execute method
are removed based on the knowledge that the operands can
never be NA. Therefore, partial evaluation optimizes the gen-
erated code by removing logic from the interpreter which is
only required for exceptional cases.

3. OpenCL JIT Compiler for AST
Interpreters

Figure 2 shows a system overview with dark gray boxes
highlighting our contributions. Starting from the R applica-
tion at the top, the FastR implementation parses the program
and creates an AST where for parallel operations such as
mapply special AST nodes are created.

Figure 2: System Overview: Starting from R code our sys-
tem transparently generates and executes OpenCL code via
FastR which is built on top of Truffle and Graal.

The Truffle specialization process transforms the AST
and eventually hands to code to Graal for compilation
via partial evaluation. Our custom OpenCL-specialization
passes remove unnecessary safety checks on a GPU. Finally,
an OpenCL kernel is generated – shown in the bottom left
corner – from the specialized Graal IR and is executed on
a GPU via our OpenCL-enabled execution back-end inte-
grated into Truffle.

Figure 3: JIT Compiler from R interpreter to OpenCL C
code. The white squares represent the existing components
in FastR and Graal compilers. The gray squares represent
our additions.

3.1 OpenCL JIT Compiler
In this section we discuss the changes we have made to the
FastR interpreter for supporting the generation and execu-
tion of OpenCL code.

Compilation Flow Overview Figure 3 shows a work-flow
of the FastR execution in combination with our extensions
for running on GPUs. The unmodified FastR implementation
performs the steps in the white boxes of: 1) parsing the
R input program; 2) building an AST, similar to the one
we have seen in Figure 1; 3) interpreting the nodes in the
AST by running their execute methods; 4) when the code
becomes hot due to running long enough in the interpreter it
is marked for compilation; 5) the partial evaluator produces a
control flow graph (CFG); 6) the CFG is optimized and then
compiled by Graal to machine code before being executed.

Additions for OpenCL code generation To support the
generation and execution of OpenCL kernels we provide
a special implementation of the mapply R function and an
extended FastR implementation with the additional steps
indicated by the gray boxes in Figure 3. We will discuss
these steps in details in the next sections.

3.2 Parallelizing mapply in R
We automatically parallelize R code which uses the mapply

function. This function is widely used in data intensive R
programs to apply a function to every element of an input
data set. We exploit the fact that the order of execution is
not specified to parallelize using our own OpenCL enabled
AST node. Related work has looked into parallelizing this
function using vectorization [21].

1 mapply <-function (FUN, ...) {

2 FUN <- match.fun(FUN)

3 if (fastR.oclEnabled())

4 return(.FastR(.NAME="mapplyOCL", FUN, ...))

5 #Default sequential implementation ...

6 }

Listing 1: Modification of the FastR mapply function to
support OpenCL execution

Listing 1 shows the modification for the mapply imple-
mentation in FastR. Lines 3-4 check if an OpenCL driver is
available and create a specialized built-in AST node that is
able to generate OpenCL. If there is no OpenCL driver, we
follow the default implementation.

3.3 Type Inference
We extend the FastR interpreter to infer the data types of
the variables used in the function passed to our OpenCL
enabled mapply. As OpenCL is a statically typed program-
ming language we need to know the data types to generate
an OpenCL kernel.

We currently support the most commonly used R data
types: vectors of primitive data types for integer, double and
logical values. R lists and sequences are handled specially,
as we will discuss below. Collections of data might contain
the special value NA (Not Available) for missing data.

Type inference for input and output values Truffle auto-
matically infers the data types of the input to mapply using
the same mechanism used for specialization. For OpenCL
execution, we also have to check that the input values of a
collection are homogeneous, i.e., all have the same type, and
they do not contain null references.

To infer the output data types, we execute the R function
in the interpreter by applying it only to the first element of
the input. Based on this execution we obtain the type of the
output data later used for generating the OpenCL kernel.

If Truffle fails to infer a unique type or if we detect null
references, we fall back to the FastR execution on the CPU
and do not generate an OpenCL kernel. Using this strategy,
we ensure that the original R program is always executed.

Handling of R lists Lists in R are heterogeneously typed,
i.e., different elements of a list can have different data types.
We represent lists as structs in OpenCL to handle different
types. This restricts lists to a fixed length, which is fine in our
case, because at the time of partial evaluation we do know
the length of arrays and lists.

Handling of NA values R is a language designed for statis-
tics where it is very common to have missing values in a data
set. FastR represents NA values by special bit patterns which
depend on the data type. For instance, for integer values NA is
represented as the minimum value for the integers. We pre-
serve the semantics of FastR on the GPU by using the same
bit patterns to represent NA values in OpenCL.

1 class MApplyOCLNode {

2 Object execute(RFunction function, RVector input) {

3 function.compileToOCL();

4

5 oclCode = cache.getOCLCode(function)

6 if (oclCode != null)

7 return runWithOCL(input, oclCode);

8

9 for (int i = 0; i < input.size; i++) {

10 output.add(function.call(input.at(i)));

11 graph = cache.getGraph(function);

12 if (graph != null) {

13 oclCode = compileForOCL(graph);

14 return runWithOCL(input, oclCode); } }

15 return output; }

16 }

Listing 2: Run method in the AST interpreter for
OpenCLMApply node.

3.4 Lexical Scope Analysis
The function passed to mapply is free to access variables
which are defined outside of the function in its lexical scope.
We traverse the AST of the function to determine which
variables in the lexical scope are accessed. Then, for each
found variable we infer its type. We use this information
during the OpenCL code generation, where these variables
become additional arguments to the OpenCL kernel.

3.5 AST Interpreter for mapply

Listing 2 shows a sketch of implementation of the execution
method of the OpenCL enabled mapply node. This method
is executed by the FastR interpreter.

We start by setting a flag indicating that the function
passed as argument to mapply will be compiled to the GPU
in line 3. We will discuss the OpenCL compilation process of
this function in detail in Section 4. Next, we check in a cache
if the R function has already been compiled to OpenCL code
and execute the OpenCL kernel if that is the case (lines 5–
7). If the function has not been compiled to OpenCL code
yet, we continue by applying the function to the elements
of the input vector in line 10. This executes the function in
the Fast R AST interpreter on the CPU. After each iteration
of the loop in line 9 we check if Truffle has performed the
partial evaluation in a background thread. If this is the case
the cache contains the control flow graph (CFG) (line 11).
Once we obtain the CFG, we generate an OpenCL kernel in
line 13 which we execute on the input vector in the next line.

The shown implementation continues execution on the
CPU in the FastR AST interpreter until Truffle exceeds a
compilation threshold and partial evaluation is performed to
produces a CFG. This has the advantage that for small input
sizes where the compilation to OpenCL has a significant
overhead we compute the result directly in the interpreter.

3.6 OpenCL Code Generation Overview
The lower half of Figure 3 shows an overview of the OpenCL
code generation process. The partial evaluation in Graal
produces a CFG on which we perform additional special-
izations for removing unnecessary checks in OpenCL. Af-
ter performing multiple lowering passes for constant fold-
ing, inlining, and other common optimizations we gener-
ate an OpenCL kernel using a simple visitor. The generated
OpenCL kernel is stored in a cache to avoid the overhead of
generating the same kernel twice for the same input CFG.
We will discuss the OpenCL code generation in more details
in the next section.

3.7 OpenCL Execution
To execute the generated OpenCL kernel we use an existing
back-end for OpenCL [3]. To copy the input data to the GPU,
we marshal the data from the R data types to OpenCL types,
execute the OpenCL program and un-marshal the data. We
will discuss in Section 5 how we can often avoid the slow
marshaling of data.

4. OpenCL Code Generation
This section discusses the OpenCL code generation process
starting from the AST created by FastR which is transformed
into a control flow graph (CFG) by Graal via partial evalu-
ation. The CFG is then specialized to OpenCL by removing
unnecessary checks. Finally, an OpenCL kernel is generated
from this specialized CFG. We discuss these steps in detail
by following the example shown in Figure 4.

4.1 Partial Evaluation and Optimizations
We start from the R code shown in the top left corner of Fig-
ure 4. On interpretation FastR creates an AST and special-
izes it for the input data it observes during execution. The
shown AST is already specialized based on the data types
encountered while executing the function as part of the im-
plementation of mapply (see Listing 2).

When the R function is executed often enough by mapply,
the R function AST is partially evaluated by Graal into a
control flow graph (CFG). To optimize the CFG, we apply
a set of common Graal passes such as function inlining,
constant folding, and partial escape analysis [19]. We do
not apply any Graal passes which specialize the CFG for the
target architecture (e.g. replacing a node with corresponding
machine code instructions). The architecture independent
but optimized CFG is shown in the lower left corner of
Figure 4.

The CFG produced by partial evaluation combines the
control flow of the FastR AST interpreter with the original
R program. The addition and multiplication nodes at the
bottom of the CFG are from the R program. The nodes
checking for data type (InstanceOf#Integer) come from
the FastR AST interpreter, whose Java source code we show
on the left side.

In the example, the FastR AST interpreter has been spe-
cialized for the AST for Integer inputs. The Java code on
the left side shows the guarding code which checks if the
optimization assumption is broken and deoptimizes if that is
the case. Deoptimization means that the CFG is invalidated
and FastR returns to interpreting the code without the opti-
mization assumption which was broken.

4.2 OpenCL Specialization
When executing the function on a GPU we can be sure that
the input data must have the proper data type, Integer in
this case. That is true, because we have marshaled the data
prior to sending it to the GPU where we can ensure that the
data types of all elements must match. Therefore, we can
eliminate these checks from the AST interpreter.

We implemented a generic mechanism for eliminating
such AST interpreter overheads and, thus, specialize the
CFG for OpenCL execution. Truffle defines a set of compiler
directives which are annotations conveying information use-
ful for specializing and optimizing the CFG. One example is
the @CompilationFinal directive we saw in Figure 1 which
specifies that a value will not change anymore and, therefore,
can be assumed constant by the Graal JIT compiler.

We added compiler directives for OpenCL specific use:

• @NotNull: specifies that the annotated variable is guaran-
teed to be not null.

• @KnownType: specifies that the type of the annotated vari-
able is known.

• @ArrayComplete: specifies that the annotated array is
guaranteed to not contain NA values.

We annotate the input arguments with all three directives
as we can ensure these properties in the marshaling step.
In the CFG, the arguments are part of the FunctionFrame

shown as a table in Figure 4.
For functions marked as being compiled to OpenCL,

as we have seen in Listing 2, an OpenCL-specific com-
piler pass is performed. This pass traverses the CFG and
removes nodes by exploiting the additional information
given by the OpenCL specific compiler directives. The
highlighted FixedGuard#TransferToInterpreter, Pi and
InstanceOf#Integer nodes, which dynamically check that
the given parameter is of type Integer and convey this ad-
ditional type information to the compiler using the Pi node,
will be removed based on the @KnownType directive.

Using this strategy, we only remove checks where we are
sure that this is legal. We will see in the section 6 an example
where a deoptimization check is still required.

4.3 OpenCL Kernel Generation
After specializing the CFG for OpenCL most of the inter-
preter logic for handling exceptional cases on the CPU are
gone. The remaining CFG, shown in the bottom right corner
of Figure 4, has still the nodes corresponding to the original

R program. The function f shown in the top right is gener-
ated by traversing the CFG and emitting an OpenCL snippet
for each node. The remaining OpenCL kernel is generic for
mapply. The two input vectors (a and b) are passed as ar-
guments to the mapply kernel where the function f is called
with two elements of the corresponding OpenCL thread-id.

5. Data Management Optimizations
This section discusses two important optimizations we im-
plement in our compiler for efficient data management be-
tween R and the GPU.

Avoiding of marshaling for R vectors Vectors are the es-
sential data structure in R to store collections of values which
have the same data type. FastR specializes its implementa-
tion of R vectors based on the data type of the elements.
Instead of storing an array of objects, FastR uses directly a
primitive array for storing the values of a specialized R vec-
tor. For example, a double array for a R vector of double
values. We take advantage of this specialization by FastR, as
fortunately, primitive arrays are already in the byte format
required for the GPU and no extra marshaling step to trans-
late the data managed by FastR into a format accessible by
OpenCL is required.

We modified the PArray (portable array) data structure
presented in [3] to expose the primitive array in the R vec-
tor implementation to it. The PArray implementation then
passes the primitive array to the OpenCL implementation
which copies it to the GPU. We will see in the evaluation
section the impact of avoiding the data marshaling step.

Optimization of R sequences A sequence in R represents
all values between a start and stop value which can be
reached with a given step size. In FastR sequences are han-
dled specially: instead of storing the elements in memory,
they are generated on-demand by evaluating the formula:
start + stride * index. This is especially beneficial in the
context of OpenCL, as we inline the formula in the OpenCL
C code whenever an R function takes a sequence as its input
argument. This saves the costly data transfer to the GPU.

In Listing 3 x and y are sequences ranging from 1 to a
given size.

1 x <- 1:size; y <- 1:size # R sequences

2 mapply(function(x, y) 0.12 * x + y, a, b)

Listing 3: R example to compute Daxpy with input
sequences of integers

Listing 4 shows the OpenCL code corresponding to the
R sequence specification 1:size. The OpenCL thread id is
used as the index in the computation of the formula.

1 int idx = get_global_id(0); // OpenCL thread id

2 int x = 1 + (1 * idx);

3 int y = 1 + (1 * idx);

Listing 4: OpenCL code snippet for R sequences

Figure 4: JIT Compiler from R interpreter to OpenCL C code.

Figure 5: Execution of an R program which gets specialized, compiled to the GPU, before a deoptimization is performed, the
program is re-profiled and generalized, compiled to the GPU again, and, finally, successfully executed on the GPU.

This technique has two clear advantages: a) OpenCL
buffers and data transfer between the CPU and GPU are
completely avoided. We only pass the start and stride in-
formation which are independent of the input array size; b)
accesses to the slow OpenCL global memory into the input
vector are avoided. This has a clear positive effect on the
overall performance as we will see in the evaluation section.

6. Handling of Changes in Program Behavior
As we have seen earlier, Truffle uses specialization to opti-
mize the AST during execution. The specialization is based
on profiling information gathered during program execution.
Truffle optimistically speculates based on the assumption
that the profiling information of past executions is represen-
tative for future executions as well. Guards are introduced to
handle changes in the program behavior when this assump-
tion is broken and a deoptimization is performed.

Deoptimizations in OpenCL We discuss a simple example
to illustrate how we handle deoptimization in our OpenCL
code generator. The execution of the example is visualized
in Figure 5. Listing 5 shows an R program which applies a
function to an input vector. The function has a branch in
line 2 that depends on the input x. If x is less than 1, the
function returns 0, otherwise 1.

1 mapply(input, function(x) {

2 if (x < 1) return(0)

3 else return(1) })

Listing 5: R function with a input depending branch

Let us assume that this function is executed on a large
input array where the first 1000 elements have the value 0.
As shown at the top left corner of Figure 5, FastR will start
interpreting the code and profile the execution by collecting
statistics on which branches are taken in the execution. For
the execution of the first elements the profiler will not regis-
tered an execution of the else branch. Based on this profiling
information, the AST is specialized by FastR and after suf-
ficient iterations the AST is handed to Graal for compilation
via partial evaluation, as shown in Figure 5. The partial eval-
uation speculatively removes the computation in the else

branch based on the profiling information. A guard checks
that in case the else branch is hit the execution is returned to
the interpreted code.

As a consequence of this behavior our OpenCL kernel
generator operates on a CFG where the else branch is no
longer present and generates the code shown in Listing 6.
1 double f(double x,global int* deoptFlag) {

2 bool cond = x < 1.0;

3 if(!cond) deoptFlag[0] = get_global_id(0);

4 return 0.0;

5 }

Listing 6: OpenCL C code generated for the R program
in Listing 5.

The code unconditionally returns 0 which corresponds to
the then branch of the original program. A guard checking
for the optimization assumption is generated in line 3 where
a global flag is set to indicate the deoptimization.

GPUs are a parallel hardware with no support for raising
exceptions. Therefore, we wait until the kernel finishes exe-
cution. When it is finished, we check if the deopt flag was
raised by any thread. If this is not the case and the flag is
still set to its initial value of -1, the speculation was correct
and the computed result is returned. Otherwise, we perform
a deoptimization as indicated with the red arrow in Figure 5.
This invalidates the generated OpenCL kernel and the con-
trol is transferred back to the FastR AST interpreter which
continues interpreting the program and collect more profil-
ing information.

Writing to the deoptFlag in global memory is not thread
safe, but as we are only interested to see if a single thread
has taken this branch this handling is sufficient. Writing the
thread identifier into the flag has the advantage, that we can
force the FastR AST interpreter to interpret the program with
the input data of of least one particular thread that provoked
the deoptimization. When the FastR AST interpreter reaches
its compilation threshold again, (as indicated in Figure 5) the
code is recompiled to OpenCL via partial evaluation with the
updated profiling information. The kernel shown in Listing 7
is generated.
1 double f(double x,global int* deoptFlag) {

2 bool cond = x < 1.0;

3 if (cond) return (0.0);

4 else return (1.0);

5 }

Listing 7: OpenCL C code generated for the R program
in Listing 5 after re-profiling

Figure 6: Performance impact of data management optimizations in FastR-OCL.

The additional profiling information have helped gener-
alizing the AST and both branches are now visible to our
OpenCL code generator. Our technique is a very simple
strategy to handle deoptimizations with minimal overhead
in the OpenCL kernel.

7. Evaluation
This section presents the performance evaluation of our JIT
GPU compilation approach for the R language. We describe
the experimental setup and the benchmarks used, discuss the
performance results, and provide some analysis.

7.1 Experimental setup
We evaluate our compiler approach on two different GPUs;
an AMD Radeon R9 295X2 with 8GB memory and a
GeForce GTX TITAN Black with 6GB memory. We use
the AMD 1598.5 and Nvidia 367.35 GPU drivers. The CPU
used in the experiments is a Intel Core i7 4770K @ 3.50GHz
with 16GB of DDR3 RAM.

We provide a comparison between FastR, GNU R, OpenCL
C++ and our GPU enabled version of FastR which we
call FastR-OCL. We use GNU R version 3.3.1 with the
enableJIT option set to level 3 which enables the JIT com-
piler. Both FastR and our FastR-OCL extension are running
on top of the Graal 0.9 Java VM (Virtual Machine). Our
OpenCL code generator is built on top of Graal VM JIT
compiler which is exposed via a Java API.

We execute each benchmark 10 times and report the
median execution time. We execute FastR as well as our
FastR-OCL with 12GB of Java heap memory. For FastR and
FastR-OCL, we performed time measurements using a cus-
tom built-in, which internally calls System.nanotime(). For
GNU R, we measure the time by calling the proc.time()

Benchmark Input (MB) Output (MB)

Daxpy 128 64
Black-Scholes 8 16
NBody 5 3
DFT 0.156 0.156
Mandelbrot 16 8
Kmeans 64 16
Hilbert Matrix (HM) 128 128
Spectral Norm (SN) 0.256 0.256

Table 1: Benchmarks and default data sizes use to evaluate
our FastR-OCL implementation.

function. All times presented in this section are measured
from R and include GPU related overheads such as the data
management.

7.2 Benchmarks
We implemented a set of benchmarks in R following data
parallel benchmark implementations from Rodinia [1], the
AMD OpenCL SDK and the programming language bench-
marks game. We selected the following eight benchmarks
representing data and compute intensive applications from
different domains: Daxpy, Black-scholes, Mandelbrot, DFT,
NBody, Kmeans, Hilbert Matrix and Spectral Norm.

Table 1 shows the data sizes used for the execution of the
benchmarks in our first two experiments. The sizes are cho-
sen to be large enough to lead to sufficiently long runtimes
in FastR but are fairly small for our massively data parallel
GPUs. As we will see, even with this moderate data size for
GPUs large speedups are obtained compared to FastR.

Figure 7: Speedup of FastR-OCL executing on AMD and Nvidia GPUs compared to GNU-R, FastR, and OpenCL C++.

7.3 Impact of Data Management Optimizations
We start by investigating the impact of the data management
optimizations presented in Section 5. Figure 6 shows relative
performance of three versions of our FastR-OCL implemen-
tation: 1) the leftmost bar shows the naive version which per-
forms marshaling for R vectors and sequences; 2) the mid-
dle bar shows the optimized version avoiding marshaling for
R vectors and sequences but performs data transfers for R
sequences; 3) the rightmost bar shows the most optimized
version avoiding marshaling for R vectors and also avoiding
data transfers for R sequences. The graph shows the perfor-
mance for AMD at the top and Nvidia at the bottom.

The benefits of the data optimization are dependent on
the compute intensity of the benchmark. For compute inten-
sive benchmarks, such as Nbody, DFT, and SN the optimiza-
tions have a minor effect, as the vast majority of execution
time is spend in the computation on the GPU. For all other
benchmarks, the benefits are more significant with runtime
improvements of up to 25.4× for the HM benchmark. Since
the HM program takes two R sequences as the input, it is pos-
sible, through our optimization, to remove most of the data
transfer, since an RSequence can be simply represented by
three numbers: start, stride and end. Overall, the geometric
mean improvement of our optimizations is 3.78× on AMD
and 3.08× on Nvidia.

7.4 Performance Comparison
Figure 7 shows a performance comparison for each bench-
mark with GNU R, FastR, our FastR-OCL implementation,
and a native hand-optimized OpenCL implementation of
each benchmark in C++. The bars show speedup over the
sequential execution with FastR. Due to the large speedups
achieved by the GPUs, the y-axis is in logarithmic scale. The

input R programs used in our evaluation are exactly the same
for GNU R, FastR, and our FastR-OCL implementation.

We can see that, FastR is 10 to 100× times faster than
GNU R for these data intensive benchmarks, confirming
prior results [18]. By using the AMD GPU, our approach is
150× times faster than FastR on average and 1000× faster
than GNU R. Using the Nvidia GPU our FastR-OCL is on
average 130× faster than FastR. For some benchmarks, such
as Mandelbrot FastR-OCL achieves a speedup of more than
1000× compared to FastR by using the Nvidia GPU.

The last set of bars shows the performance achieve by
a highly tuned manually written native C++ OpenCL im-
plementation. For the nbody, dft, HM and SN benchmarks,
FastR-OCL achieves very similar performance to the na-
tive OpenCL implementation. For benchmarks such as
Mandelbrot, the C++ OpenCL implementation is clearly
faster due to the fact it exploits parallelism in multiple di-
mension where our code generator only exploits a single
dimension of the OpenCL thread iteration space. On aver-
age our implementation is about 1.8× slower than the native
OpenCL implementation. Although there is room for im-
provement, this is achieved fully automatically, starting from
a program written in the R dynamic interpreted language.

7.5 Performance of Cold Runs
The experiments we did so far where measured as a median
of multiple runs inside the same R session running on top
of the Java VM. Therefore, the VM had time to warm up
and perform the JIT compilation before reporting a mea-
surement. A more typical end user scenario is to execute
the R program only once with a fresh JIT compiler state. To
this end, we start a new R session, execute and measure the
whole R program execution time once and produce a single
data point — which corresponds to a single execution of a R

Figure 8: Speedup of FastR-OCL over FastR executed with a cold JIT compiler with increasing input sizes from left to right.
The x-axis labels show the FastR runtime while the y-axis shows the speedup of our GPU-enabled FastR-OCL implementation.
Even R programs running only for a few seconds achieve large speedups.

program on a cold JIT compiler — after which the R session
is terminated. We repeat this process 10 times and report the
median value to account for noise.

Figure 8 shows a performance comparison of FastR and
FastR-OCL measured using a cold JIT compiler. For each
benchmark, we increase the input size from left to right and
the x-axis labels show the FastR execution time. The y-axis
shows the speedup achieved of FastR-OCL over FastR for
the AMD (blue circle) and Nvidia (red triangle) GPU.

Across all benchmarks, we see that even on a cold JIT
compiler, a data size which executes for only a few seconds
in FastR is sufficient for achieving a speedup using the GPU
via our FastR-OCL. For example, using the GPU becomes
beneficial for the simple daxpy benchmark for input sizes
where the computing process takes longer than 0.7 seconds
in FastR. For an input size where FastR runs for 83 seconds,
FastR-OCL obtains speedups of more than 60× for both
GPUs. Overall we observe that despite the AST specializa-
tion, partial evaluation, OpenCL kernel generation and com-
pilation, large speedups are obtained even for R programs
which execute only for a few seconds.

7.6 Breakdown of OpenCL Execution Times
The selected benchmarks reflect different types of GPU ap-
plications. Figures 9 and 10 show a breakdown of the peak
performance OpenCL run-times for all benchmarks on the
AMD and NVIDIA GPUs. The total runtime is broken down
into four parts: copying the data to the GPU (H → D), the
kernel execution, copying the data from the GPU (D → H)

and remaining time (other), which includes the runtime of
the interpreter. The data sizes used for these experiments are
shown in Table 1.

Kernel Execution The benchmarks that achieve the high-
est speedups with our OpenCL JIT compiler for GPUs, are
those where the predominant part is the OpenCL kernel exe-
cution. This is the case for NBody, DFT and Spectral Norm,
where the OpenCL computation takes up to 90-99% of the
overall runtime. For the rest of the benchmarks, the kernel
takes between 3-15%. In these cases, an efficient data man-
agement is crucial to achieve good performance.

Data Transfers The figures show clearly the benefits
of our data transfer optimizations for the R sequences in
OpenCL. This is the case of DFT, Mandelbrot, Hilbert and
Spectral Norm, where copying the data to the GPU takes
less than one per cent. For some benchmarks the data trans-
fer time takes up to 75% of the overall execution time. How-
ever, as shown in Figure 8, even with the data transfers to and
from the GPU, R programs can benefit with large speedups.

7.7 Compilation time
Table 2 shows the compilation time for each benchmark.
Partial evaluation and optimizations performed by Graal
take significantly longer than the OpenCL kernel genera-
tion which takes only about 11ms. The compilation of the
OpenCL kernel by the GPU driver can take up to 250ms.
Overall we see that the overhead for OpenCL kernel gener-
ation is small and less than partial evaluation on the AMD

Figure 9: Breakdown of the OpenCL execution run-times for
8 R benchmarks executed on a AMD ATI GPU.

Figure 10: Breakdown of the OpenCL execution run-times
for 8 R benchmarks executed on a Nvidia Gforce GPU.

platform and similar to partial evaluation for the Nvidia plat-
form. This low overhead also explains why using the GPU
is already beneficial for small input sizes, as seen before.

The actual OpenCL GPU compilation time shows that
further improvement are possible by directly targeting the
GPU instruction set and bypass the OpenCL compiler. In
the future, we intend to investigate the use of OpenCL SPIR
(Standard Portable Intermediate Representation) instead of
plain OpenCL source code to lower even more the compi-
lation overhead. However, as our results have shown, large
speedups are already achievable, even when relying on the
OpenCL compiler.

7.8 Summary
This evaluation has shown that accelerating R programs
with FastR-OCL is not just feasible but highly beneficial
for data parallel applications. Exploiting the parallel power
of the GPU leads to large speedups. Our data management
optimizations to avoid marshaling for R vectors and data
transfers altogether for R sequences increase performance by
up to 25×. We obtain speedups ranging from 43× up to more
than 1000× depending on the benchmark when compared to
the sequential execution in FastR. Even when executing the
R program only a single time on a cold JIT compiler we still

Time in ms

Benchmark PE Kernel Comp. Comp.
+ Opt. Gen. AMD Nvidia

Daxpy 106.27 7.27 29.19 81.32
Black-scholes 94.54 12.70 55.79 180.20
NBbody 93.59 11.35 47.04 109.82
DFT 95.09 20.12 61.56 250.86
Mandelbrot 114.31 9.37 34.70 102.78
K-Means 113.54 9.62 41.33 93.43
Hilbert 105.44 7.74 27.82 95.67
Spectral N. 146.57 11.86 87.03 219.53

Mean 107 11 48 142

Table 2: Time (in milliseconds) for different phase of the
GPU code generation process: Partial evaluation and opti-
mizations (PE + Opt.), OpenCL kernel generation (Gen.) and
compilation by the GPU driver (Comp.).

obtain large speedups and have shown that using the GPU is
beneficial even for short running R programs.

8. Related Work
This section reviews the relevant literature on exploiting
parallelism from R and other interpreted languages.

Library-based R GPU support The majority of approaches
for parallelizing programs written in dynamically interpreted
languages such as R relies on the use of libraries. There
are numerous R libraries that support CUDA and OpenCL
execution. These libraries typically implement well-known
building blocks in specific application domains, such as the
GPUR library which supports matrix operations. Internally,
the library is written in CUDA or OpenCL, or it leverages
an existing implementation such as ViennaCL [17] in the
case of GPU. Other approaches rely on the use of wrapper
for low-level interface such as OpenCL and they require the
programmer to write OpenCL code inside R programs. The
technique presented in this paper is fully automatic and it
does not rely on any library implementation. Moreover, it
is more generally applicable than all these existing library-
based approaches.

Parallelism Exploitation in R Riposte [20] uses trace-
driven compilation to dynamically discover vector opera-
tions from arbitrary R code and it produces specialized par-
allel code for CPUs. Similar to us, other researchers have
targeted the apply function to extract parallelism by auto-
matically vectorizing [21] its implementation for the CPU.
This paper is the first work to show how parallelism can be
exploited to automatically accelerate R programs on GPUs.

Specialization in R There has been work on using special-
ization techniques with R in order to speed up the execu-

tion of the R interpreter. FastR [9, 18], on which our work
is based, using Graal as a JIT compiler to produce efficient
code for the CPU. Orbit VM [22] uses profile-directed spe-
cialization techniques for accelerating the execution of R
code. Renjin [10] uses a delay computation mechanism sim-
ilar to lazy evaluation that produces a computation graph.
Once the results is needed, the computation is then optimize
using type information available for instance to produce a
more efficient execution of the computation. As far as we
are aware, this paper is the first one to investigate the use of
these techniques for JIT GPU code generation.

GPU acceleration for other interpreted languages Very
few GPU code generators exist for other interpreted lan-
guages. Among the existing works, Numba [13] is a CUDA
JIT compiler for python which is based on annotations to
identify parallel section of code and data types. Our ap-
proach does not require any user annotation and instead it
exploits the parallel semantic of existing R operations such
as the apply functions. Harlan-J [15] is an OpenCL JIT
compiler for JavaScript. It is based on Harlan-J language, a
JavaScript extension for data parallelism. None of these ap-
proaches provide a fully automatic heterogeneous JIT com-
piler for high-level languages. Programmers need to change
the code and adapt it for GPU execution. Our approach is
totally transparent with all code transformations happening
automatically at runtime without programmer intervention.

GPU JIT Compilers for Java There are some prior works
on JIT compilation to CUDA or OpenCL for Java such as
AMD Aparapi, Rootbeer [16], and JaBBE [24]. In all the
projects, programmers need to extend a provided GPU class
and implement an execute method that wraps the GPU
code. These approaches still remain low-level as the parallel
execution is explicit even if the applications are implemented
in a high-level programming language.

Sumatra is a JIT compiler that automatically generates
HSAIL code at runtime using the Graal compiler for the
Java 8 Stream API. Similar to Sumatra, IBM J9 [8] gener-
ates OpenCL C code for the forEach construct of the Stream
API. In our prior work we implemented an OpenCL JIT
compiler using Graal for the JVM [3]. Parallel and hetero-
geneous Java programs are implemented using a new Java
API for heterogeneous computing, JPAI, where, in contrast
to Java Stream API, the computation is composable and
reusable multiple times once they are defined [4].

This paper targets interpreted and dynamic programming
languages on GPUs, which is significantly more challeng-
ing because of the OpenCL compiler has to reduce the in-
terpreter overhead, specialize the input program and handle
with speculations on GPUs. Once our OpenCL JIT compiler
has a specialized AST and has obtained the type informa-
tion, the code generation process that translates the Graal IR
to OpenCL is very similar to these existing Java works.

9. Conclusions
In this paper, we have presented a technique to transparently
and automatically offload computations from interpreted dy-
namic languages to GPUs. We implemented this technique
for the R programming language as a modification of the
FastR interpreter which is built on top of Truffle and Graal.
To the best of our knowledge, this paper presents the first
OpenCL JIT compiler for R.

We have discussed the challenges when generating high
performance OpenCL code from managed languages and
we have shown that the combination of AST specialization
and partial evaluation helps to reduce overheads. We use
compiler directives to convey optimization information for
avoiding unnecessary checks on the GPU.

We presented data management optimizations for avoid-
ing marshaling of R Vectors and an optimized handling of R
Sequences which even avoids costly data transfers. Our ap-
proach is able to handle cases where a specialized AST has
to be deoptimized and generalized during execution. On av-
erage our approach is 150× faster than FastR on a range of
data intensive benchmarks and only 1.8× slower compared
to manually written OpenCL code. We achieve significant
speedups of 60× and more even for short running R pro-
grams when using a cold JIT compiler.

In future work, we would like to extend the coverage of R
language features, such as the handling of data frames. Our
technique is not special to R but it could easily be applied to
other Truffle languages such as Ruby or JavaScript. We plan
to explore this path in the future.

Acknowledgments
The authors would also like to thank the anonymous review-
ers as well as Roland Schatz, Stefan Marr and Gilles Du-
boscq for fruitful discussions.

References
[1] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H.

Lee, and K. Skadron. Rodinia: A Benchmark Suite for Het-
erogeneous Computing. IISWC 2009.

[2] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon,
and H. Mössenböck. Graal IR: An Intermediate Representa-
tion for Speculative Optimizations in a Dynamic Compiler.
VMIL 2013.

[3] J. J. Fumero, T. Remmelg, M. Steuwer, and C. Dubach. Run-
time Code Generation and Data Management for Heteroge-
neous Computing in Java. PPPJ 2015.

[4] J. J. Fumero, M. Steuwer, and C. Dubach. A Composable
Array Function Interface for Heterogeneous Computing in
Java. ARRAY, 2014.

[5] Y. Futamura. Partial Evaluation of Computation Process–
An Approach to a Compiler-Compiler. Higher-Order and
Symbolic Computation, 1999.

[6] A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective
JIT Compiler for Resource-constrained Devices. VEE 2006.

[7] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. PLDI 1992.

[8] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. Com-
piling and optimizing java 8 programs for gpu execution. In
PACT, 2015.

[9] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A Fast Abstract
Syntax Tree Interpreter for R. VEE 2014.

[10] M.-J. Kallen and H. Mühleisen. Latest developments around
renjin. Talk at R Summit & Workshop, Copenhagen, 2015.

[11] M. N. Kedlaya, B. Robatmili, C. Caşcaval, and B. Hardekopf.
Deoptimization for Dynamic Language JITs on Typed, Stack-
based Virtual Machines. VEE 2014.

[12] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez,
K. Russell, and D. Cox. Design of the Java HotSpot&Trade;
Client Compiler for Java 6. ACM Trans. Archit. Code Optim.

[13] S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based
Python JIT Compiler. LLVM 2015.

[14] M. Paleczny, C. Vick, and C. Click. The java hotspottm server
compiler. JVM’ 2001.

[15] U. Pitambare, A. Chauhan, and S. Malviya. Just-in-time
Acceleration of JavaScript. In Technical Report, School of
Informatics and Computing, Indiana University, 2013.

[16] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch. Rootbeer:
Seamlessly Using GPUs from Java. HPCC-ICESS, 2012.

[17] K. Rupp. GPU-Accelerated Non-negative Matrix Factoriza-
tion for Text Mining. page 77, 2012.

[18] L. Stadler, A. Welc, C. Humer, and M. Jordan. Optimizing R
Language Execution via Aggressive Speculation. DLS 2016.

[19] L. Stadler, T. Würthinger, and H. Mössenböck. Partial escape
analysis and scalar replacement for Java. In CGO, 2014.

[20] J. Talbot, Z. DeVito, and P. Hanrahan. Riposte: A Trace-driven
Compiler and Parallel VM for Vector Code in R. PACT ’12,
2012.

[21] H. Wang, D. Padua, and P. Wu. Vectorization of Apply to
Reduce Interpretation Overhead of R. OOPSLA 2015, .

[22] H. Wang, P. Wu, and D. Padua. Optimizing R VM: Alloca-
tion Removal and Path Length Reduction via Interpreter-level
Specialization. CGO 2014, .

[23] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to Rule Them All. Onward! 2013.

[24] W. Zaremba, Y. Lin, and V. Grover. JaBEE: Framework for
Object-oriented Java Bytecode Compilation and Execution on
Graphics Processor Units. GPGPU-5, 2012.

	Introduction
	Background
	AST Interpreters with Truffle
	Efficient JIT Compilation with Graal
	Example in FastR

	OpenCL JIT Compiler for AST Interpreters
	OpenCL JIT Compiler
	Parallelizing mapply in R
	Type Inference
	Lexical Scope Analysis
	AST Interpreter for mapply
	OpenCL Code Generation Overview
	OpenCL Execution

	OpenCL Code Generation
	Partial Evaluation and Optimizations
	OpenCL Specialization
	OpenCL Kernel Generation

	Data Management Optimizations
	Handling of Changes in Program Behavior
	Evaluation
	Experimental setup
	Benchmarks
	Impact of Data Management Optimizations
	Performance Comparison
	Performance of Cold Runs
	Breakdown of OpenCL Execution Times
	Compilation time
	Summary

	Related Work
	Conclusions

