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ABSTRACT
Since the early conception of managed runtime systems with tiered
JIT compilation, several research attempts have been made to ac-
celerate the bytecode execution. In this paper, we extend prior
attempts by performing an initial analysis of whether heteroge-
neous hardware accelerators in the form of Graphics Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAS) can
help towards achieving higher performance during the bytecode in-
terpreter mode. To answer this question, we implemented a simple
parallel Java bytecode interpreter written in OpenCL and executed
it across a plethora of devices, including GPUs and FPGAs. Our pre-
liminary evaluation shows that under specific workloads, hardware
acceleration can yield up to 17x better performance compared to
traditional optimized interpreters running on Intel CPUs and up to
214x compared to ARM CPUs.

CCS CONCEPTS
• Software and its engineering → Interpreters; • Hardware
→ Hardware accelerators; • Computing methodologies →
Parallel programming languages.
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1 INTRODUCTION
Heterogeneous hardware acceleration of programs written in man-
aged programming languages is currently feasible via different
forms such as bindings of native GPU or FPGA code [1, 6, 7, 10]
and/or dynamic JIT compilation of high-level programs to low-level
GPU code or FPGA bitstreams [3–5, 14, 15]. In addition to being
able to accelerate applications written in managed languages such
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as Java, heterogeneous hardware accelerators provide opportuni-
ties for accelerating key components of virtual machines such as
interpreters [2] or parts of the Garbage Collection [8, 9] that due to
their nature take longer a time to execute.

The current complexity of Virtual Machines (VMs) along with
the plethora of features they support (e.g., reflection, dynamic code
dispatch) indicate that not all of their parts can be accelerated
on heterogeneous hardware since these devices are less capable
compared to CPUs regarding access to Operating System (OS) func-
tionalities and lack of unified memory address space. Despite the
lack of these features, VMs can still benefit from the offloading of
certain parts of the runtime systems onto parallel accelerators, that
usually remain underutilized.

In this work [2], we present our work in progress towards run-
ning a parallel bytecode interpreter on heterogeneous hardware.
We tackle the challenge of accelerating and parallelizing a simple
bytecode interpreter on different heterogeneous hardware, and
provide a first insight under which circumstances such acceler-
ation is meaningful. In contrast to prior works, we make use of
parallel thread identifiers in the bytecode interpreter to execute
SIMD workloads on OpenCL-compatible devices. Additionally, we
present a multiple-heap VM that can exploit the different memory
tiers, present in hardware accelerators, optimizingmemory accesses
while improving data coalescing. In detail, this paper makes the
following contributions:
• It presents a prototype of a parallel bytecode interpreter
implemented in OpenCL capable of being executed on a wide
range of hardware accelerators such as GPUs and FPGAs.
• It presents a device multiple-heap configuration that takes
advantage of all memory tiers presented on OpenCL devices.
• It evaluates the parallel bytecode interpreter across three
classes of devices on two different platforms, showcasing the
performance benefits of parallel execution on heterogeneous
hardware accelerators.

2 BYTECODE INTERPRETERS FOR
HETEROGENEOUS HARDWARE

As a proof of concept, we implemented a subset of the Java byte-
codes in C++ and OpenCL. We chose the C++ bytecode interpreter
as a baseline for an initial OpenCL parallel prototype. The byte-
codes defined correspond to an extension of the small-subset of
Java bytecode explained by Terence Parr, from the University of
San Francisco of how to build a simple Virtual Machine 1. We ex-
tend this simple bytecode interpreter to study the feasibility of
running, as efficiently as possible, parallel bytecode interpreters on
heterogeneous computer architectures.
1https://www.youtube.com/watch?v=OjaAToVkoTw
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2.1 Baseline C++ Bytecode Interpreter
Similarly to a standard Java VirtualMachine, our prototype executes
bytecodes in a virtual stack-machine. The interpreter contains 25
bytecodes, grouped in the following categories:
• Arithmetic operations: We provide integer arithmetic op-
erations such as IDIV, IADD, IMUL, IDIV. Additionally, we
provide shift operations in the bytecode interpreter such as
RSHIFT, and LSHIFT. Finally, we include comparison opera-
tions for integers, such as top of the stack less-than (ILT),
and top of the stack equal-to (IEQ).
• Memory operations: We support loads and stores from the
global heap memory to the stack, using the bytecodes GLOAD,
GSTORE as well as loads and stores from/to different positions
of the stack LOAD/STORE. To load and store data using the
array format, we provide the bytecodes GLOAD_INDEXED and
GSTORE_INDEXED. In our interpreter, the index is retrieved
from the top of the stack. Additionally, we include fast and
common load/store operations such as ICONST, that loads a
constant value, and ICONST1, that loads the value 1.
• Control flow:We provide different bytecodes for defining
control flow. These bytecodes include BR, BRT, BRF, HALT,

RET, and CALL.
• Interpreter control: We include bytecodes such as POP,
DUP.
• Auxiliary bytecode: We provide the PRINT bytecode as a
utility to ease debugging and print the internal state.

Listing 1 shows an example for the vector multiplication opera-
tion between two vectors using our bytecodes. At first, a constant
is loaded to be used as a loop bound, over which the two vectors
are iterated. Then, two numbers that are loaded from the heap onto
the stack are multiplied and the result is stored in a separate region
of the heap.

2.2 Single Threaded OpenCL Interpreter
Since plain C++ code cannot be executed on GPUs, it has to be
ported to a heterogeneous-friendly programming language such
as OpenCL, CUDA, or SYCL. In contrast to GVM [2] that provides
a Java interpreter implemented in CUDA for running on NVIDIA
GPUs, we choose OpenCL because it is a standard and it can be
executed on many heterogeneous hardware including GPUs, multi-
core CPUs and FPGAs, while using the same source code.
Listing 1: Vector multiplication using our bytecode inter-
preter.
1 ICONST, 0,

2 DUP,

3 ICONST, SIZE, // Define the vector size

4 IEQ,

5 BRT, 23, // jump if true to bc=23

6 DUP, // offset for each array to load

7 DUP, // offset for each array to load

8 GLOAD_INDEXED, SIZE, // topStack=heap[SIZE+offset]

9 LOAD, 1, // load from position 1

10 GLOAD_INDEXED, SIZE * 2,

11 IMUL,

12 GSTORE_INDEXED, BASE, // heap[BASE+offset] = topStack

13 ICONST1,

14 IADD,

15 BR, 2, //jump to bc=2

16 POP,

17 HALT

CPU (Host) Heterogeneous Device
Execution thread

Code

Heap

Stack

Data Transfer (H -> D) & Execution

Copy of Heap (D -> H) 

Device Execution 
Thread

Device’s Global Memory
Figure 1: Memory and execution flow of the OpenCL single
threaded interpreter.

Our first approach is to port the whole C++ interpreter as a single
OpenCL kernel that runs using one OpenCL thread. Our interpreter,
similarly to the JVM or any other virtual machine, defines different
memory regions that store the code, the stack, and the heap. Figure 1
shows a representation of how those memory regions are organized
on the OpenCL device. As shown, the code region, the heap as
well as the stack regions are copied to the device’s global memory
(e.g., to the GPU’s global memory). Once data is copied, we launch
the kernel using an OpenCL range of one thread for global and
local dimensions. We choose this initial approach because it is the
simplest way to run with OpenCL without having to specify data
partitioning and thread-id configurations. As it will be explained
in the evaluation section, this approach does not perform well due
to the lack of efficient hardware resource utilization.

2.3 Parallel Interpreters
Having the single-threaded OpenCL implementation as our base-
line, we introduce a number of bytecodes in the interpreter that
allow us to access data and compute resources in parallel. This leads
us to a better resource utilization of the heterogeneous devices, in
the form of the parallelism available on GPUs or multiple compute
units available on FPGAs.

Thread identifier. To allow parallel access of data and parallel
computation, we introduce the concept of thread identifier (thread-
id) in our interpreter. We create a new bytecode, called TREAD_ID

that stores the OpenCL work-item index (get_global_id) onto the
stack. In this configuration, we can run a bytecode interpreter using
multiple threads. Each thread accesses the corresponding data items,
following the Single Instruction Multiple Thread parallel (SIMT)
model present in the OpenCL programming model.

Multi-heap configuration. Since the OpenCL memory model de-
fines different tiers of memory, our interpreter exploits those re-
gions with the aim of improving data locality and memory accesses.
We achieve that by introducing the concept of “multiple heaps”. Our
OpenCL parallel interpreter handles access to different memory
areas depending on the content of the data to be accessed. Those
regions are as follows:
• Code region: Since the code is static, we copy the bytecode
to the constant memory area of the heterogeneous device.
Depending on the target device (e.g., a dedicated GPU), this
region allows faster memory accesses with the promise that
code (bytecodes) will not change during runtime.
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Figure 2: Memory and execution flow of the parallel OpenCL bytecode interpreter.

• Local regions: Since the interpreter accesses the heap fre-
quently (for every load and store within the loop), we can
make use of local memory. This area is a scratchpad memory
that provides faster memory accesses and is located in the
L3 cache of integrated GPUs and the L1 cache of discrete
GPUs. In the case of an FPGA device, the local memory is
the on-device block memory which has low latency.
• Private regions: data that can be accessed privately among
all threads can be stored in private memory. Hence, we use
this region to allocate the stack. Therefore, each device’s
thread (e.g., each GPU/FPGA thread) contains a private stack.

Having a single heap can lead to multiple memory accesses to
obtain the data required to perform the computation, thereby caus-
ing memory contention. Since the OpenCL kernel is executed using
hundreds, or even thousands of physical threads, we decided to pro-
vide multiple global heaps. Each global heap stores a subset of the
data. The first time each thread accesses memory, it loads 128 bytes
(typical cache-line size on GPUs) in a single transaction. In our pro-
totype we use three different heap areas that are allocated on the
GPU/FPGA’s global memory. Note that we introduced three global
heaps just to illustrate the concept, but it could be any number of
global heaps. The bytecode interpreter can make use of those heaps
(0-2) to improve data accesses and data coalescing. To do so, we in-
troduce a pair of bytecodes, named PARALLEL_GLOAD_INDEXED and
PARALLEL_GSTORE_INDEXED. These bytecodes receive a parameter
that indicates the heap number from which to read/write from/to.
For example, the bytecode sequence:

PARALLEL_GLOAD_INDEXED, 0

will load an integer value from heap 0 to the stack. The index used
is the value that is on top of the stack:

topStack ← heap0[top]

On the other hand, the bytecode sequence:

PARALLEL_STORE_INDEXED, 2

will store onto heap 2 an integer value from the top of the stack.
The index used is the value that is on top of the stack:

heap2[top] ← (top − 1)

Figure 2 shows a high-level representation of the different mem-
ory regions used in the parallel interpreter as well as an overview
of the execution workflow between the host and the device. When
the OpenCL kernel is executed, it first copies the data from the
global memory of each heap to local memory. Then it performs
the operation using local and private memory. When the kernel

Listing 2: Vector-mult in the parallel bytecode interpreter.
1 THREAD_ID,

2 DUP,

3 PARALLEL_GLOAD_INDEXED, 0, // stack = heap0[threadID]

4 THREAD_ID,

5 PARALLEL_GLOAD_INDEXED, 1, // stack = heap1[threadID]

6 IMUL,

7 PARALLEL_GSTORE_INDEXED, 2, // heap2[threadID] = (topStack - 1)

8 HALT

finishes, it copies back the data from local to global memory to
obtain the final results.

Listing 2 shows an example of vector multiplication using the
explained bytecodes that allow parallel access using the thread-id
and multi-heap configuration. Note that this example uses three
global heaps in which input data is read from heaps 0 and 1, and
heap 2 is used for the output.

3 EVALUATION
We evaluate our prototype on two different GPUs: an NVIDIA
GP100 with 16GB of memory, and an Intel Integrated HD Graphics
(HD 630). We used NVIDIA 384.111 and Intel OpenCL 19.52.15209
Gen9 NEO drivers. Additionally, we evaluate our prototype on a
Xilinx KCU1500 FPGA with 16GB of memory. The CPUs used for
running the baseline configurations are an Intel i7-7700K CPU at
4.20GHz and a ARMv7 processor at 1GHz.

Methodology. We execute the vector multiplication application
in a C++ single-threaded bytecode interpreter on CPUs (Intel and
ARM), and an OpenCL version of our parallel bytecode prototype
on the Intel CPU, the GPUs and the FPGA. We report the OpenCL
kernel time that takes to execute the whole parallel bytecode in-
terpreter on the target device along with the execution time of
the sequential bytecode interpreters on ARM and Intel CPUs. We
execute each application 11 times and report the median value.
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Figure 4: Performance comparison of parallel interpreters against single threaded C++ on ARM CPU.

Single Thread Interpreter. Figure 3 shows the total execution time,
in nanoseconds, of the vector multiplication application for three
input sizes. The first bar shows the total execution time on an
Intel CPU using the C++ implementation. The second bar shows
execution time of the OpenCL single-threaded interpreter on an
Intel CPU. The following two bars show the performance of the
single-threaded implementation in OpenCL on GPUs (NVIDIA and
Intel HD Graphics), and the last bar shows the execution time on a
Xilinx FPGA. As shown in Figure 3, the single-threaded OpenCL
implementation is between 2 − 3 orders of magnitide slower than
the C++ implementation on Intel CPU, meanwhile the OpenCL-
CPU performs within 75% of the C++ interpreter on CPU. As we
explain in Section 2.2, this is due to the underutilized computing
and memory resources.

Performance of Parallel Interpreters. Figure 4 shows the speed-up
of the OpenCL parallel interpreters for the vector multiplication
for a wider range of input data sizes compared to the execution
of the interpreter on an ARMv7 processor at 1GHz. We choose
ARM as a baseline because it operates at a similar frequency to
the heterogeneous devices. As shown, the multi-threaded CPU
OpenCL interpreter achieves up to 84x speedup compared to the
execution of the single-threaded interpreter running on ARM and
6x speedup compared to the execution on an Intel CPU (the black
bar). GPU interpreters achieve speedups of up to 151x and 214x
compared to the execution on ARM and 11x and 17x compared
to the execution on an Intel. Regarding FPGAs, we show different
configurations using 4 compute units and different local group sizes
(64, 128 and 256 threads). However, none of those configurations
achieve speedups. The observed slowdowns are attributed to the
combination of data depenendencies, simple math operations, and
the low frequency that our FPGA operates on (300MHz).

How this technique could be applied in current VMs? The pre-
sented prototype has demonstrated that it is feasible to execute
bytecode interpreters on heterogeneous architectures, offering bet-
ter performance, even for simple computations. Despite that the par-
allel bytecode interpreter is not sufficient to represent mainstream
languages’ bytecodes, this technique can be seen as a complemen-
tary strategy for running faster bytecodes of some subsections of
applications. For example, for compute methods that follow SIMD
and pipelining, VMs can transform original bytecodes to index data
using the THREAD_ID and multi-heap configuration and run those
parts of bytecodes on an interpreter that operates on a heteroge-
neous device. This can be suitable in the context of TornadoVM [4],
in which FPGA compilation might take hours to perform the JIT
compilation. During that time, TornadoVM can execute the user
application on a parallel interpreter on GPUs. Additionally, VMs

could make use of heterogeneous hardware for other operations,
such as GC [9].

4 RELATEDWORK
Limited prior works exist regarding the execution of bytecode in-
terpreters on heterogeneous hardware. GVM [2] is a GPU bytecode
interpreter for Java programs. Although GVM executes on GPUs,
there are many differences compared to our approach. GVM ex-
ecutes a single-threaded CUDA interpreter and in order achieve
better performance, it executes many bytecode interpreters on the
GPU. In contrast, we propose launching one interpreter that has
the notion of thread-parallelism through the THREAD_ID bytecode.
Moreover, GVM stores all data in the global memory of the GPU,
while our approach takes full advantage of the different memory
tiers present on OpenCL devices, such as private, local, and con-
stant memory. Additionally, our approach is fully implemented in
OpenCL. Therefore, it can be executed not only on NVIDIA GPUs
but on any OpenCL-compatible device, such as FPGAs, dedicated
and integrated GPUs.

JopCMP [11, 13] is a real time Java shared-memory processor
specialized for running Java applications. JopCMP is a stack-based
processor that efficiently runs Java bytecodes and it is implemented
using a low-level hardware description language. Since our ap-
proach is implemented in OpenCL, it is more generic than JopCMP,
and it is able to run on multiple OpenCL device compatible devices,
including GPUs, multi-thread CPUs and integrated GPUs.

5 CONCLUSION
This paper presented a work-in-progress towards exploiting byte-
code interpreters on heterogeneous hardware, such as GPUs and
FPGAs. To efficiently run managed language bytecode interpreters
on GPUs and FPGAs, this paper introduced the concept of parallel
bytecode interpreters, in which the runtime has the notion of par-
allel indexing. In this way, bytecode interpreters can exploit data
parallelism. Additionally, we introduced the concept of multiple
heaps for heterogeneous architectures in which objects and byte-
buffers can access different levels of the tiered memory. In future
work, we plan to extend the evaluation with more benchmarks
and include comparisons against existing interpreted programming
languages, such as Python, R or Ruby. Finally, we aim to exploit
parallel interpreters using the SYCL parallel programming standard
for C++ [12].
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