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About me

• Postdoc @ The University of Manchester 
(Since October 2017)

• Currently technical lead of TornadoVM

• 2014-2017: PhD in Dynamic Compilation for GPUs 
using Graal & Truffle (Java, R, Ruby) @ The 
University of Edinburgh

• Oracle Labs alumni (worked on Truffle FastR + 
Flink for distributed computing)

• CERN OpenLab alumni on the evaluation of the 
CilkPlus compiler for the ROOT physics 
framework
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Motivation
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Why should we care about GPUs/FPGAs, etc.?

Intel Ice Lake (10nm)
8 cores HT, AVX(512 SIMD)
~1TFlops* (including the iGPU)
~ TDP 28W

NVIDIA GP 100 – Pascal - 16nm
60 SMs, 64 cores each
3584 FP32 cores
10.6 TFlops (FP32)
TDP ~300 Watts
https://images.nvidia.com/content/pdf/tesla/whit
epaper/pascal-architecture-whitepaper.pdf

Intel FPGA Stratix 10 (14nm)
Reconfigurable Hardware
~ 10 TFlops
TDP ~225Watts

CPU GPU FPGA
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https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf


What is a GPU? Graphics Processing Unit

Contains a set of Stream Multiprocessor 
cores (SMx)
* Pascal arch. 60 SMx
* ~3500 CUDA cores

Users need to know:
A) Programming model (normally CUDA or 
OpenCL)
B) Details about the architecture are 
essential to achieve performance (e.g., 
memory tiers (local/shared memory, global 
memory, threads distribution).

* Non sequential consistency, manual 
barriers, etc.

Source: NVIDIA docs 
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What is an FPGA? Field Programmable Gate Array

           
            

      
         

           
            

      
         

           
            

      
         

           
            

      
         

     

                  
                                        

You can configure the design of your 
hardware after manufacturing

It is like having "your algorithms 
directly wired on hardware" with only 
the parts you need
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Example in VHDL (using structural modelling)
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library ieee;
use ieee.std_logic_1164.all;

entity half_adder is -- Entity
port (a, b: in std_logic;

sum, carry: out std_logic);
end half_adder;

architecture structure of half_adder is -- Architecture
component xor_gate -- xor component

port (i1, i2: in std_logic;
o1: out std_logic);

end component;

component and_gate -- and component
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map (i1 => a, i2 => b, o1 => sum);
u2: and_gate port map (i1 => a, i2 => b, o1 => carry);

end structure;



Using OpenCL instead 

9

library ieee;
use ieee.std_logic_1164.all;

entity half_adder is -- Entity
port (a, b: in std_logic;

sum, carry: out std_logic);
end half_adder;

architecture structure of half_adder is -- Architecture
component xor_gate -- xor component

port (i1, i2: in std_logic;
o1: out std_logic);

end component;

component and_gate -- and component
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map (i1 => a, i2 => b, o1 => sum);
u2: and_gate port map (i1 => a, i2 => b, o1 => carry);

end structure;

Industry is pushing for 
OpenCL on FPGAs! 

_kernel void sum
(float a,float b,__global 
float*result)
{

result[0] = a + b;
}



We could potentially use ALL devices!

CPU Cores:
* 4-8 cores per CPU
* Local cache (L1-L3)

GPU cores:
* Thousands of cores per GPU card
* > 60 cores per SM
* Small caches per SM
* Global memory within the GPU
* Few thread/schedulers per SM

FPGAs:
* Chip with LUTs, BRAMs, and wires to
* Normally global memory within the chip
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Current Computer Systems & Prog. Lang.
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Ideal System for Managed Languages
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TornadoVM
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Demo: Kinect Fusion with TornadoVM

https://github.com/beehive-lab/kfusion-tornadovm

* Computer Vision Application
* ~7K LOC
* Thousands of OpenCL LOC 
generated.
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https://github.com/beehive-lab/kfusion-tornadovm


TornadoVM Overview
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Tornado API – example
class Compute {
public static void mxm(Matrix2DFloat A, Matrix2DFloat B,

Matrix2DFloat C, final int size) {
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
float sum = 0.0f;
for (int k = 0; k < size; k++) {

sum += A.get(i, k) * B.get(k, j);
}
C.set(i, j, sum);

}
}

}
}
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Tornado API – example
class Compute {
public static void mxm(Matrix2DFloat A, Matrix2DFloat B,

Matrix2DFloat C, final int size) {
for (@Parallel int i = 0; i < size; i++) {

for (@Parallel int j = 0; j < size; j++) {
float sum = 0.0f;
for (int k = 0; k < size; k++) {

sum += A.get(i, k) * B.get(k, j);
}
C.set(i, j, sum);

}
}

}
}

We add the parallel 
annotation as a hint for the 
compiler. 
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Tornado API – example
class Compute {
public static void mxm(Matrix2DFloat A, Matrix2DFloat B,

Matrix2DFloat C, final int size) {
for (@Parallel int i = 0; i < size; i++) {

for (@Parallel int j = 0; j < size; j++) {
float sum = 0.0f;
for (int k = 0; k < size; k++) {

sum += A.get(i, k) * B.get(k, j);
}
C.set(i, j, sum);

}
}

}
}

TaskSchedule ts = new TaskSchedule("s0");
ts.task("t0", Compute::mxm, matrixA, matrixB, matrixC, size)

.streamOut(matrixC)

.execute();

$ tornado Compute

18



Tornado API – Map-Reduce
class Compute {
public static void map(float[] input, float[] output) {

for (@Parallel int i = 0; i < size; i++) {
… // map computation

}
}
public static void reduce(@Reduce float[] data) {

for (@Parallel int i = 0; i < size; i++) {
data[0] += … 

}
}

}

TaskSchedule ts = new TaskSchedule("MapReduce");
ts.streamIn(input)

.task("map", Compute::map, input, output)
.task("reduce", Compute::reduce, output)
.streamOut(output)
.execute();

github.com/beehive-lab/TornadoVM/tree/master/examples
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https://github.com/beehive-lab/TornadoVM/tree/master/examples


Demo: N-Body with TornadoVM
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github.com/beehive-lab/TornadoVM/tree/master/examples

https://github.com/beehive-lab/TornadoVM/tree/master/examples


TornadoVM Compiler & Runtime Overview
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TornadoVM JIT Compiler Specializations
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FPGA Specializations

          

    

      

             

  

     

               

        

      

 

     

   

        

   

       

         

  

   

      

        

 

          

         

   

       

     

     

         
  

   

      

        

 

          

         

   

       

     

       

         

  

   

      

        

 

          

            

       

     

     

      

          

          

    

          

            

        

          

            

       

     

     

      

        

void compute(float[] input,
float[] output) {

for (@Parallel int i = 0; …) }
for (int j = 0; ...) {

// Computation
}

}
}
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FPGA Specializations

With Compiler specializations, TornadoVM performs from 5x to 240x against Java Hostpot for DFT!!!

void compute(float[] input,
float[] output) {

for (@Parallel int i = 0; …) }
for (int j = 0; ...) {

// Computation
}

}
}
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Non-specialized version Specialized version



More About FPGA Support

$ tornado YourProgram

$ tornado –Dtornado.fpga.aot.bitstream=<path> YourProgram

$ tornado –Dtornado.fpga.emulation=True YouProgram
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Specializations: reductions
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void reduce(float[] input, @Reduce float[] output) {
for (@Parallel int i = 0; I < N; I++) {

output[0] += input[I];
}

}

… but how?



Reduction Specializations via Snippets

With reduction-specializations we execute the code within 80% of the native (manual written code)
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TornadoVM: VM in a VM
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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TornadoVM Bytecodes - Example
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Batch Processing: 16GB into 1GB GPU
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Batch Processing: 16GB into 1GB GPU
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Dynamic Reconfiguration
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Dynamic Reconfiguration
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Dynamic Reconfiguration
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How is the decision made?

• End-to-end: including JIT compilation time

• Peak Performance: without JIT and after warming-up

• Latency: does not wait for all threads to finish
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New compilation tier for Heterogeneous Systems
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New compilation tier for Heterogeneous Systems
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Memory Management in a Nutshell

• Host Variables: read-only in the JVM 
heap, R/W or W then we perform a 
new copy.

• Device Variables: a new copy unless 
OpenCL zero copy, e.g., iGPU
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Related Work

46



Related Work (in the Java context)

• Sumatra
• Java Stream 8 API to target HSAIL

• No FPGA Support

• No Dynamic Application Reconfiguration

• Aparapi
• Kernels follow OpenCL semantics but in Java (e.g., thread global-id is exposed)

• AFAIK, target only GPUs/CPUs
• No Dynamic Application Reconfiguration

• Marawacc
• It targets only GPUs/CPUs

• Only map-style operation

• It also targets R and Ruby!

• IBM GPU J9
• Similar to Sumatra accelerating parallel Streams -> Targets only NVIDIA GPUs

• No Dynamic Application Reconfiguration
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TornadoVM supports more type of 
hardware & offloading only when it 
offers better performance



Ok, cool! What about performance?
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Performance

- NVIDIA GTX 1060
- Intel FPGA Nallatech 385a
- Intel Core i7-7700K

* TornadoVM performs up to 7.7x 
over the best device (statically).
* Up to >4500x over Java sequential
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Performance: FPGA vs Multi-threading Java

* TornadoVM on FPGA is up to 19x over Java multi-threads (8 cores)
* Slowdown for small sizes
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More details in our papers!
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https://github.com/beehive-lab/TornadoVM/blob/master/assembly/src/docs/Publications.md

https://github.com/beehive-lab/TornadoVM/blob/master/assembly/src/docs/Publications.md


Limitations 
&

Future Work
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Limitations

We inherit limitations from the underlaying Prog. Model:
• No object support (except for a few cases)

• No recursion

• No dynamic memory allocation (*) 

• No support for exceptions (*)
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Future Work

• GPU/FPGA full capabilities
• Exploitation of Tier-memories such as local memory (in progress)

• Policies for energy efficiency

• Multi-device within a task-schedule

• More parallel skeletons (stencil, scan, filter, …)
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Current Applicability of TornadoVM
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EU H2020 E2Data Project

https://e2data.eu/

"End-to-end solutions for Big Data deployments that fully exploit heterogeneous hardware"

European Union’s Horizon H2020 research and innovation programme under grant agreement No 780245
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https://e2data.eu/


E2Data Project – Distributed H. System with Apache Flink & TornadoVM

https://e2data.eu/
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https://e2data.eu/


How TornadoVM is currently being used in Industry?
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Problem:
Many patents who had been discharged from a hospital are admitted again within a 
specific time interval.

Goal:
Improve the predictive capability of a hospital readmission by considering some features 
like the patent profile, characteristics, medical condition, etc.

Input
A data set that represents 10 years of clinical care at 130 US hospitals
and integrated delivery networks. 
• It includes over 50 features such as patent number, gender, age, admission type, …

Output:
• Predict if a patent will be readmitted or not after the hospitalization.



How TornadoVM is currently being used in Industry?
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Problem:
Many patents who had been discharged from a hospital are admitted again within a 
specific time interval.

Goal:
Improve the predictive capability of a hospital readmission by considering some features 
like the patent profile, characteristics, medical condition, etc.

Input
A data set that represents 10 years of clinical care at 130 US hospitals
and integrated delivery networks. 
• It includes over 50 features such as patent number, gender, age, admission type, …

Output:
• Predict if a patent will be readmitted or not after the hospitalization.

Using TornadoVM for the 
training phase (2M 
patients):
* ~2615s --> 185s ! (14x)

Thanks to Gerald Mema from Exus for sharing the numbers and the use case



          … 
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TornadoVM available on Github and DockerHub
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Team
• Academic staff:

Christos Kotselidis

• Research staff:
Juan Fumero
Athanasios Stratikopoulos
Foivos Zakkak
Florin Blanaru

• Alumni:
James Clarkson
Benjamin Bell
Amad Aslam

We are looking for collaborations (industrial & academics) -> Talk to us!

• PhD Students:

Michail Papadimitriou

Maria Xekalaki

• Interns:

Undergraduates:

Gyorgy Rethy

Mihai-Christian Olteanu

Ian Vaughan
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Takeaways
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Thank you so much for your attention

This work is partially supported by the EU Horizon 2020 E2Data 780245

Contact: Juan Fumero <juan.fumero@manchester.ac.uk>
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Q&A
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Current Computer Systems
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Current Computer Systems & Prog. Lang.
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Current Computer Systems & Prog. Lang.
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Still, why should we care about GPUs/FPGAs, etc?

                       

           

   

   

   

   

   

 
 
 
 
 
 
 

   

                  

            

                   

                   

Performance for each device 
against Java hotspot:
* Up to 4500x by using a GPU
* 240x by using an FPGA
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How to Program? E.g., OpenCL 

1. Query OpenCL Platforms

2. Query devices available

3. Create device objects

4. Create an execution context

5. Create a command queue

6. Create and compile the GPU Kernels

7. Create <GPU> buffers

8. Create buffers and send data (Host -> Device)

10. Send data back (Device -> Host)

11. Free Memory

9. Run <GPU> Kernel
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How the OpenCL Generated Kernel looks like?

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void vectorAdd(__global uchar *_heap_base, ulong _frame_base, .. )
{

int i_9, i_11, i_4, i_3, i_13, i_14, i_15;
long l_7, l_5, l_6;
ulong ul_0, ul_1, ul_2, ul_12, ul_8, ul_10;

__global ulong *_frame = (__global ulong *) &_heap_base[_frame_base];

// BLOCK 0
ul_0 = (ulong) _frame[6];
ul_1 = (ulong) _frame[7];
ul_2 = (ulong) _frame[8];
i_3 = get_global_id(0);
// BLOCK 1 MERGES [0 2 ]
i_4 = i_3;
for(;i_4 < 256;) {
// BLOCK 2
l_5 = (long) i_4;
l_6 = l_5 << 2;
l_7 = l_6 + 24L;
ul_8 = ul_0 + l_7;
i_9 = *((__global int *) ul_8);
ul_10 = ul_1 + l_7;
i_11 = *((__global int *) ul_10);
ul_12 = ul_2 + l_7;
i_13 = i_9 + i_11;
*((__global int *) ul_12) = i_13;
i_14 = get_global_size(0);
i_15 = i_14 + i_4;
i_4 = i_15;

}
// BLOCK 3

return;
}

Access to the Java frame

Access the data within 
the frame

Access the arrays (skip 
object header)

Operation

Final Store

private void vectorAdd(int[] a, int[] b, int[] c) {
for (@Parallel int i = 0; i < c.length; i++) {

c[i] = a[i] + b[i];
}

}
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FPGA Support
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void compute(float[] input,
float[] output) {

for (@Parallel int i = 0; …) }
for (@Parallel int j = 0; ...) 

{
// Computation

}
}

}

Java 

TornadoVM 

Physical hardware

Program FPGAs within your 
favourite IDE: Eclipse, 
IntelliJ, … 



JEP - 8047074
GOALS Implemented in Tornado?

No syntactic changes to Java 8 parallel stream API (Own API)

Autodetection of hardware and software stack

Heuristic to decide when to offload to GPU gives perf gains

Performance improvement for embarrassingly parallel workloads

Code accuracy has the same (non-) guarantees you can get with multi core parallelism

Code will always run with fallback to normal CPU execution if offload fails In progress!

Will not expose any additional security risks Under research

Offloaded code will maintain Java memory model correctness (find JSR) Under formal specification
(several trade-offs have to 
be considered)

Where possible enable JVM languages to be offloaded Plan to integrate with Truffle. 
E.g., FastR-GPU: 
https://bitbucket.org/juanfumero/fastr-

gpu/src/default/

http://openjdk.java.net/jeps/8047074
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https://bitbucket.org/juanfumero/fastr-gpu/src/default/
http://openjdk.java.net/jeps/8047074


Additional features

Additional Features (not included JEP 8047074) Implemented in Tornado?

Include GPUs, integrated GPU, FPGAs, multi-cores CPUs

Live-task migration between devices

Code specialization for each accelerator

Potentially accelerate existing Java libraries (Lucene)

Automatic use of tier-memory on the device (e.g., local memory) < In progress>

Virtual Shared Memory (OpenCL 2.0) < In progress>
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