
Tornado VM: A Virtual Machine for Exploiting
High-Performance Heterogeneous

Hardware of Java Programs

Juan Fumero <juan.fumero@manchester.ac.uk>

Twitter: @snatverk

Joker<?> Conference 2019, Saint Petersburg, October 26th

Agenda

• Motivation & Background

• TornadoVM

• API examples

• Runtime

• JIT Compiler

• Dynamic Reconfiguration

• Data Management

• Performance Results

• Related Work

• Conclusions

2

About me

• Postdoc @ The University of Manchester
(Since October 2017)

• Currently technical lead of TornadoVM

• 2014-2017: PhD in Dynamic Compilation for GPUs
using Graal & Truffle (Java, R, Ruby) @ The
University of Edinburgh

• Oracle Labs alumni (worked on Truffle FastR +
Flink for distributed computing)

• CERN OpenLab alumni on the evaluation of the
CilkPlus compiler for the ROOT physics
framework

3

https://jjfumero.github.io/

https://jjfumero.github.io/

Motivation

4

Why should we care about GPUs/FPGAs, etc.?

Intel Ice Lake (10nm)
8 cores HT, AVX(512 SIMD)
~1TFlops* (including the iGPU)
~ TDP 28W

NVIDIA GP 100 – Pascal - 16nm
60 SMs, 64 cores each
3584 FP32 cores
10.6 TFlops (FP32)
TDP ~300 Watts
https://images.nvidia.com/content/pdf/tesla/whit
epaper/pascal-architecture-whitepaper.pdf

Intel FPGA Stratix 10 (14nm)
Reconfigurable Hardware
~ 10 TFlops
TDP ~225Watts

CPU GPU FPGA

5

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

What is a GPU? Graphics Processing Unit

Contains a set of Stream Multiprocessor
cores (SMx)
* Pascal arch. 60 SMx
* ~3500 CUDA cores

Users need to know:
A) Programming model (normally CUDA or
OpenCL)
B) Details about the architecture are
essential to achieve performance (e.g.,
memory tiers (local/shared memory, global
memory, threads distribution).

* Non sequential consistency, manual
barriers, etc.

Source: NVIDIA docs

6

What is an FPGA? Field Programmable Gate Array

You can configure the design of your
hardware after manufacturing

It is like having "your algorithms
directly wired on hardware" with only
the parts you need

7

Example in VHDL (using structural modelling)

8

library ieee;
use ieee.std_logic_1164.all;

entity half_adder is -- Entity
port (a, b: in std_logic;

sum, carry: out std_logic);
end half_adder;

architecture structure of half_adder is -- Architecture
component xor_gate -- xor component

port (i1, i2: in std_logic;
o1: out std_logic);

end component;

component and_gate -- and component
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map (i1 => a, i2 => b, o1 => sum);
u2: and_gate port map (i1 => a, i2 => b, o1 => carry);

end structure;

Using OpenCL instead

9

library ieee;
use ieee.std_logic_1164.all;

entity half_adder is -- Entity
port (a, b: in std_logic;

sum, carry: out std_logic);
end half_adder;

architecture structure of half_adder is -- Architecture
component xor_gate -- xor component

port (i1, i2: in std_logic;
o1: out std_logic);

end component;

component and_gate -- and component
port (i1, i2: in std_logic;

o1: out std_logic);
end component;

begin
u1: xor_gate port map (i1 => a, i2 => b, o1 => sum);
u2: and_gate port map (i1 => a, i2 => b, o1 => carry);

end structure;

Industry is pushing for
OpenCL on FPGAs!

_kernel void sum
(float a,float b,__global
float*result)
{

result[0] = a + b;
}

We could potentially use ALL devices!

CPU Cores:
* 4-8 cores per CPU
* Local cache (L1-L3)

GPU cores:
* Thousands of cores per GPU card
* > 60 cores per SM
* Small caches per SM
* Global memory within the GPU
* Few thread/schedulers per SM

FPGAs:
* Chip with LUTs, BRAMs, and wires to
* Normally global memory within the chip

10

Current Computer Systems & Prog. Lang.

11

Ideal System for Managed Languages

12

TornadoVM

13

Demo: Kinect Fusion with TornadoVM

https://github.com/beehive-lab/kfusion-tornadovm

* Computer Vision Application
* ~7K LOC
* Thousands of OpenCL LOC
generated.

14

https://github.com/beehive-lab/kfusion-tornadovm

TornadoVM Overview

15

Tornado API – example
class Compute {
public static void mxm(Matrix2DFloat A, Matrix2DFloat B,

Matrix2DFloat C, final int size) {
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
float sum = 0.0f;
for (int k = 0; k < size; k++) {

sum += A.get(i, k) * B.get(k, j);
}
C.set(i, j, sum);

}
}

}
}

16

Tornado API – example
class Compute {
public static void mxm(Matrix2DFloat A, Matrix2DFloat B,

Matrix2DFloat C, final int size) {
for (@Parallel int i = 0; i < size; i++) {

for (@Parallel int j = 0; j < size; j++) {
float sum = 0.0f;
for (int k = 0; k < size; k++) {

sum += A.get(i, k) * B.get(k, j);
}
C.set(i, j, sum);

}
}

}
}

We add the parallel
annotation as a hint for the
compiler.

17

Tornado API – example
class Compute {
public static void mxm(Matrix2DFloat A, Matrix2DFloat B,

Matrix2DFloat C, final int size) {
for (@Parallel int i = 0; i < size; i++) {

for (@Parallel int j = 0; j < size; j++) {
float sum = 0.0f;
for (int k = 0; k < size; k++) {

sum += A.get(i, k) * B.get(k, j);
}
C.set(i, j, sum);

}
}

}
}

TaskSchedule ts = new TaskSchedule("s0");
ts.task("t0", Compute::mxm, matrixA, matrixB, matrixC, size)

.streamOut(matrixC)

.execute();

$ tornado Compute

18

Tornado API – Map-Reduce
class Compute {
public static void map(float[] input, float[] output) {

for (@Parallel int i = 0; i < size; i++) {
… // map computation

}
}
public static void reduce(@Reduce float[] data) {

for (@Parallel int i = 0; i < size; i++) {
data[0] += …

}
}

}

TaskSchedule ts = new TaskSchedule("MapReduce");
ts.streamIn(input)

.task("map", Compute::map, input, output)
.task("reduce", Compute::reduce, output)
.streamOut(output)
.execute();

github.com/beehive-lab/TornadoVM/tree/master/examples

19

https://github.com/beehive-lab/TornadoVM/tree/master/examples

Demo: N-Body with TornadoVM

20

github.com/beehive-lab/TornadoVM/tree/master/examples

https://github.com/beehive-lab/TornadoVM/tree/master/examples

TornadoVM Compiler & Runtime Overview

21

TornadoVM JIT Compiler Specializations

22

FPGA Specializations

void compute(float[] input,
float[] output) {

for (@Parallel int i = 0; …) }
for (int j = 0; ...) {

// Computation
}

}
}

23

FPGA Specializations

With Compiler specializations, TornadoVM performs from 5x to 240x against Java Hostpot for DFT!!!

void compute(float[] input,
float[] output) {

for (@Parallel int i = 0; …) }
for (int j = 0; ...) {

// Computation
}

}
}

24

Non-specialized version Specialized version

More About FPGA Support

$ tornado YourProgram

$ tornado –Dtornado.fpga.aot.bitstream=<path> YourProgram

$ tornado –Dtornado.fpga.emulation=True YouProgram

25

Specializations: reductions

26

void reduce(float[] input, @Reduce float[] output) {
for (@Parallel int i = 0; I < N; I++) {

output[0] += input[I];
}

}

… but how?

Reduction Specializations via Snippets

With reduction-specializations we execute the code within 80% of the native (manual written code)

27

TornadoVM: VM in a VM

28

TornadoVM Bytecodes - Example

29

TornadoVM Bytecodes - Example

30

TornadoVM Bytecodes - Example

31

TornadoVM Bytecodes - Example

32

TornadoVM Bytecodes - Example

33

TornadoVM Bytecodes - Example

34

TornadoVM Bytecodes - Example

35

TornadoVM Bytecodes - Example

36

Batch Processing: 16GB into 1GB GPU

37

Batch Processing: 16GB into 1GB GPU

38

Dynamic Reconfiguration

39

Dynamic Reconfiguration

40

Dynamic Reconfiguration

41

How is the decision made?

• End-to-end: including JIT compilation time

• Peak Performance: without JIT and after warming-up

• Latency: does not wait for all threads to finish

42

New compilation tier for Heterogeneous Systems

43

New compilation tier for Heterogeneous Systems

44

Memory Management in a Nutshell

• Host Variables: read-only in the JVM
heap, R/W or W then we perform a
new copy.

• Device Variables: a new copy unless
OpenCL zero copy, e.g., iGPU

45

Related Work

46

Related Work (in the Java context)

• Sumatra
• Java Stream 8 API to target HSAIL

• No FPGA Support

• No Dynamic Application Reconfiguration

• Aparapi
• Kernels follow OpenCL semantics but in Java (e.g., thread global-id is exposed)

• AFAIK, target only GPUs/CPUs
• No Dynamic Application Reconfiguration

• Marawacc
• It targets only GPUs/CPUs

• Only map-style operation

• It also targets R and Ruby!

• IBM GPU J9
• Similar to Sumatra accelerating parallel Streams -> Targets only NVIDIA GPUs

• No Dynamic Application Reconfiguration

47

TornadoVM supports more type of
hardware & offloading only when it
offers better performance

Ok, cool! What about performance?

48

Performance

- NVIDIA GTX 1060
- Intel FPGA Nallatech 385a
- Intel Core i7-7700K

* TornadoVM performs up to 7.7x
over the best device (statically).
* Up to >4500x over Java sequential

49

Performance: FPGA vs Multi-threading Java

* TornadoVM on FPGA is up to 19x over Java multi-threads (8 cores)
* Slowdown for small sizes

50

More details in our papers!

51

https://github.com/beehive-lab/TornadoVM/blob/master/assembly/src/docs/Publications.md

https://github.com/beehive-lab/TornadoVM/blob/master/assembly/src/docs/Publications.md

Limitations
&

Future Work

52

Limitations

We inherit limitations from the underlaying Prog. Model:
• No object support (except for a few cases)

• No recursion

• No dynamic memory allocation (*)

• No support for exceptions (*)

53

Future Work

• GPU/FPGA full capabilities
• Exploitation of Tier-memories such as local memory (in progress)

• Policies for energy efficiency

• Multi-device within a task-schedule

• More parallel skeletons (stencil, scan, filter, …)

54

Current Applicability of TornadoVM

55

EU H2020 E2Data Project

https://e2data.eu/

"End-to-end solutions for Big Data deployments that fully exploit heterogeneous hardware"

European Union’s Horizon H2020 research and innovation programme under grant agreement No 780245

56

https://e2data.eu/

E2Data Project – Distributed H. System with Apache Flink & TornadoVM

https://e2data.eu/

57

https://e2data.eu/

How TornadoVM is currently being used in Industry?

58

Problem:
Many patents who had been discharged from a hospital are admitted again within a
specific time interval.

Goal:
Improve the predictive capability of a hospital readmission by considering some features
like the patent profile, characteristics, medical condition, etc.

Input
A data set that represents 10 years of clinical care at 130 US hospitals
and integrated delivery networks.
• It includes over 50 features such as patent number, gender, age, admission type, …

Output:
• Predict if a patent will be readmitted or not after the hospitalization.

How TornadoVM is currently being used in Industry?

59

Problem:
Many patents who had been discharged from a hospital are admitted again within a
specific time interval.

Goal:
Improve the predictive capability of a hospital readmission by considering some features
like the patent profile, characteristics, medical condition, etc.

Input
A data set that represents 10 years of clinical care at 130 US hospitals
and integrated delivery networks.
• It includes over 50 features such as patent number, gender, age, admission type, …

Output:
• Predict if a patent will be readmitted or not after the hospitalization.

Using TornadoVM for the
training phase (2M
patients):
* ~2615s --> 185s ! (14x)

Thanks to Gerald Mema from Exus for sharing the numbers and the use case

 …

60

TornadoVM available on Github and DockerHub

61

Team
• Academic staff:

Christos Kotselidis

• Research staff:
Juan Fumero
Athanasios Stratikopoulos
Foivos Zakkak
Florin Blanaru

• Alumni:
James Clarkson
Benjamin Bell
Amad Aslam

We are looking for collaborations (industrial & academics) -> Talk to us!

• PhD Students:

Michail Papadimitriou

Maria Xekalaki

• Interns:

Undergraduates:

Gyorgy Rethy

Mihai-Christian Olteanu

Ian Vaughan

62

Takeaways

63

Thank you so much for your attention

This work is partially supported by the EU Horizon 2020 E2Data 780245

Contact: Juan Fumero <juan.fumero@manchester.ac.uk>

64

Q&A

65

Contact: Juan Fumero <juan.fumero@manchester.ac.uk>

@snatverk

Tornado VM: A Virtual Machine for Exploiting
High-Performance Heterogeneous

Hardware of Java Programs
Juan Fumero

Postdoc @ The University of Manchester, UK

<juan.fumero@manchester.ac.uk>

Twitter: @snatverk

Joker<?> Conference 2019, Saint Petersburg October 26th

66

Back up slides

67

Current Computer Systems

68

Current Computer Systems & Prog. Lang.

69

Current Computer Systems & Prog. Lang.

70

Still, why should we care about GPUs/FPGAs, etc?

Performance for each device
against Java hotspot:
* Up to 4500x by using a GPU
* 240x by using an FPGA

71

How to Program? E.g., OpenCL

1. Query OpenCL Platforms

2. Query devices available

3. Create device objects

4. Create an execution context

5. Create a command queue

6. Create and compile the GPU Kernels

7. Create <GPU> buffers

8. Create buffers and send data (Host -> Device)

10. Send data back (Device -> Host)

11. Free Memory

9. Run <GPU> Kernel

72

How the OpenCL Generated Kernel looks like?

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void vectorAdd(__global uchar *_heap_base, ulong _frame_base, ..)
{

int i_9, i_11, i_4, i_3, i_13, i_14, i_15;
long l_7, l_5, l_6;
ulong ul_0, ul_1, ul_2, ul_12, ul_8, ul_10;

__global ulong *_frame = (__global ulong *) &_heap_base[_frame_base];

// BLOCK 0
ul_0 = (ulong) _frame[6];
ul_1 = (ulong) _frame[7];
ul_2 = (ulong) _frame[8];
i_3 = get_global_id(0);
// BLOCK 1 MERGES [0 2]
i_4 = i_3;
for(;i_4 < 256;) {
// BLOCK 2
l_5 = (long) i_4;
l_6 = l_5 << 2;
l_7 = l_6 + 24L;
ul_8 = ul_0 + l_7;
i_9 = *((__global int *) ul_8);
ul_10 = ul_1 + l_7;
i_11 = *((__global int *) ul_10);
ul_12 = ul_2 + l_7;
i_13 = i_9 + i_11;
*((__global int *) ul_12) = i_13;
i_14 = get_global_size(0);
i_15 = i_14 + i_4;
i_4 = i_15;

}
// BLOCK 3

return;
}

Access to the Java frame

Access the data within
the frame

Access the arrays (skip
object header)

Operation

Final Store

private void vectorAdd(int[] a, int[] b, int[] c) {
for (@Parallel int i = 0; i < c.length; i++) {

c[i] = a[i] + b[i];
}

}

73

FPGA Support

74

void compute(float[] input,
float[] output) {

for (@Parallel int i = 0; …) }
for (@Parallel int j = 0; ...)

{
// Computation

}
}

}

Java

TornadoVM

Physical hardware

Program FPGAs within your
favourite IDE: Eclipse,
IntelliJ, …

JEP - 8047074
GOALS Implemented in Tornado?

No syntactic changes to Java 8 parallel stream API (Own API)

Autodetection of hardware and software stack

Heuristic to decide when to offload to GPU gives perf gains

Performance improvement for embarrassingly parallel workloads

Code accuracy has the same (non-) guarantees you can get with multi core parallelism

Code will always run with fallback to normal CPU execution if offload fails In progress!

Will not expose any additional security risks Under research

Offloaded code will maintain Java memory model correctness (find JSR) Under formal specification
(several trade-offs have to
be considered)

Where possible enable JVM languages to be offloaded Plan to integrate with Truffle.
E.g., FastR-GPU:
https://bitbucket.org/juanfumero/fastr-

gpu/src/default/

http://openjdk.java.net/jeps/8047074

75

https://bitbucket.org/juanfumero/fastr-gpu/src/default/
http://openjdk.java.net/jeps/8047074

Additional features

Additional Features (not included JEP 8047074) Implemented in Tornado?

Include GPUs, integrated GPU, FPGAs, multi-cores CPUs

Live-task migration between devices

Code specialization for each accelerator

Potentially accelerate existing Java libraries (Lucene)

Automatic use of tier-memory on the device (e.g., local memory) < In progress>

Virtual Shared Memory (OpenCL 2.0) < In progress>

76

